1
|
Patra D, Pal KK, Mandal S. Inter-species interaction of bradyrhizobia affects their colonization and plant growth promotion in Arachis hypogaea. World J Microbiol Biotechnol 2024; 40:234. [PMID: 38844667 DOI: 10.1007/s11274-024-04035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 05/24/2024] [Indexed: 07/14/2024]
Abstract
Bradyrhizobia are the principal symbiotic partner of the leguminous plant and take active part in biological nitrogen-fixation. The present investigation explores the underlying competition among different strains during colonization in host roots. Six distinct GFP and RFP-tagged Bradyrhizobium strains were engineered to track them inside the peanut roots either independently or in combination. The Bradyrhizobium strains require different time-spans ranging from 4 to 21 days post-infection (dpi) for successful colonization which further varies in presence of another strain. While most of the individual strains enhanced the shoot and root dry weight, number of nodules, and nitrogen fixation capabilities of the host plants, no significant enhancement of plant growth and nodulation efficiency was observed when they were allowed to colonize in combinations. However, if among the combinations one strains is SEMIA 6144, the co-infection results in higher growth and nodulation efficiency of the hosts. From the competition experiments it has been found that Bradyrhizobium japonicum SEMIA 6144 was found to be the most dominant strain for effective nodulation in peanut. The extent of biofilm and exopolysaccharide (EPS) production by these isolates, individually or in combinations, were envisaged to correlate whether these parameters have any impact on the symbiotic association. But the extent of colonization, growth-promotion and nitrogen-fixation ability drastically lowered when a strain present together with other Bradyrhizobium strain. Therefore, it is imperative to understand the interaction between two co-inoculating Bradyrhizobium species for nodulation followed by plant growth promotion to develop suitable consortia for enhancing BNF in peanut and possibly for other legumes.
Collapse
Affiliation(s)
- Dipanwita Patra
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Kamal K Pal
- ICAR-National Institute of Abiotic Stress Management, School of Drought Stress Management, Malegaon Khurd, Baramati, Pune, Maharashtra, 413115, India
| | - Sukhendu Mandal
- Laboratory of Molecular Bacteriology, Department of Microbiology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
2
|
Amon CER, Fossou RK, Ebou AET, Koua DK, Kouadjo CG, Brou YC, Voko Bi DRR, Cowan DA, Zézé A. The core bacteriobiome of Côte d'Ivoire soils across three vegetation zones. Front Microbiol 2023; 14:1220655. [PMID: 37692382 PMCID: PMC10483230 DOI: 10.3389/fmicb.2023.1220655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
The growing understanding that soil bacteria play a critical role in ecosystem servicing has led to a number of large-scale biogeographical surveys of soil microbial diversity. However, most of such studies have focused on northern hemisphere regions and little is known of either the detailed structure or function of soil microbiomes of sub-Saharan African countries. In this paper, we report the use of high-throughput amplicon sequencing analyses to investigate the biogeography of soil bacteria in soils of Côte d'Ivoire. 45 surface soil samples were collected from Côte d'Ivoire, representing all major biomes, and bacterial community composition was assessed by targeting the V4-V5 hypervariable region of the 16S ribosomal RNA gene. Causative relationships of both soil physicochemical properties and climatic data on bacterial community structure were infered. 48 phyla, 92 classes, 152 orders, 356 families, and 1,234 genera of bacteria were identified. The core bacteriobiome consisted of 10 genera ranked in the following order of total abundance: Gp6, Gaiella, Spartobacteria_genera_incertae_sedis, WPS-1_genera_incertae_sedis, Gp4, Rhodoplanes, Pseudorhodoplanes, Bradyrhizobium, Subdivision3_genera_incertae_sedis, and Gp3. Some of these genera, including Gp4 and WPS-1_genera_incertae_sedis, were unequally distributed between forest and savannah areas while other taxa (Bradyrhizobium and Rhodoplanes) were consistently found in all biomes. The distribution of the core genera, together with the 10 major phyla, was influenced by several environmental factors, including latitude, pH, Al and K. The main pattern of distribution that was observed for the core bacteriobiome was the vegetation-independent distribution scheme. In terms of predicted functions, all core bacterial taxa were involved in assimilatory sulfate reduction, while atmospheric dinitrogen (N2) reduction was only associated with the genus Bradyrhizobium. This work, which is one of the first such study to be undertaken at this scale in Côte d'Ivoire, provides insights into the distribution of bacterial taxa in Côte d'Ivoire soils, and the findings may serve as biological indicator for land management in Côte d'Ivoire.
Collapse
Affiliation(s)
- Chiguié Estelle Raïssa Amon
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Romain Kouakou Fossou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Anicet E. T. Ebou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Dominiqueua K. Koua
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Claude Ghislaine Kouadjo
- Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, Abidjan, Côte d’Ivoire
| | - Yao Casimir Brou
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| | - Don Rodrigue Rosin Voko Bi
- Unité de Formation et de Recherche en Agroforesterie, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Adolphe Zézé
- Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire
| |
Collapse
|
3
|
Nzepang DT, Gully D, Nguepjop JR, Zaiya Zazou A, Tossim HA, Sambou A, Rami JF, Hocher V, Fall S, Svistoonoff S, Fonceka D. Mapping of QTLs Associated with Biological Nitrogen Fixation Traits in Peanuts (Arachis hypogaea L.) Using an Interspecific Population Derived from the Cross between the Cultivated Species and Its Wild Ancestors. Genes (Basel) 2023; 14:genes14040797. [PMID: 37107555 PMCID: PMC10138160 DOI: 10.3390/genes14040797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Peanuts (Arachis hypogaea L.) are an allotetraploid grain legume mainly cultivated by poor farmers in Africa, in degraded soil and with low input systems. Further understanding nodulation genetic mechanisms could be a relevant option to facilitate the improvement of yield and lift up soil without synthetic fertilizers. We used a subset of 83 chromosome segment substitution lines (CSSLs) derived from the cross between a wild synthetic tetraploid AiAd (Arachis ipaensis × Arachis duranensis)4× and the cultivated variety Fleur11, and evaluated them for traits related to BNF under shade-house conditions. Three treatments were tested: without nitrogen; with nitrogen; and without nitrogen, but with added0 Bradyrhizobium vignae strain ISRA400. The leaf chlorophyll content and total biomass were used as surrogate traits for BNF. We found significant variations for both traits specially linked to BNF, and four QTLs (quantitative trait loci) were consistently mapped. At all QTLs, the wild alleles decreased the value of the trait, indicating a negative effect on BNF. A detailed characterization of the lines carrying those QTLs in controlled conditions showed that the QTLs affected the nitrogen fixation efficiency, nodule colonization, and development. Our results provide new insights into peanut nodulation mechanisms and could be used to target BNF traits in peanut breeding programs.
Collapse
Affiliation(s)
- Darius T. Nzepang
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Djamel Gully
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Joël R. Nguepjop
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Arlette Zaiya Zazou
- Institute of Agricultural Research for Development (IRAD) (IRAD), Maroua, Cameroon
| | - Hodo-Abalo Tossim
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Aissatou Sambou
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
| | - Jean-François Rami
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Valerie Hocher
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Saliou Fall
- Laboratoire Commun de Microbiologie (LCM) (IRD/ISRA/UCAD), Centre de Recherche de Bel Air, Dakar BP 1386, Senegal
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Sergio Svistoonoff
- PHIM Plant Health Institute, Univ Montpellier, IRD, CIRAD, INRAE, Institut Agro, Montpellier, France
- Laboratoire Mixte International Adaptation des Plantes et Microorganismes Associés aux Stress Environnementaux (LAPSE), Centre de Recherche de Bel Air, Dakar CP 18524, Senegal
| | - Daniel Fonceka
- Centre d’Etudes Régional pour l’Amélioration de l’Adaptation à la Sécheresse, CERAAS-Route de Khombole, Thiès BP 3320, Senegal
- Dispositif de Recherche et de Formation en Partenariat, Innovation et Amélioration Variétale en Afrique de l’Ouest (IAVAO), CERAAS Route de Khombole, Thiès BP 3320, Senegal
- CIRAD, UMR AGAP, F-34398 Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Correspondence:
| |
Collapse
|
4
|
Chen WF, Meng XF, Jiao YS, Tian CF, Sui XH, Jiao J, Wang ET, Ma SJ. Bacteroid Development, Transcriptome, and Symbiotic Nitrogen-Fixing Comparison of Bradyrhizobium arachidis in Nodules of Peanut (Arachis hypogaea) and Medicinal Legume Sophora flavescens. Microbiol Spectr 2023; 11:e0107922. [PMID: 36656008 PMCID: PMC9927569 DOI: 10.1128/spectrum.01079-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
Bradyrhizobium arachidis strain CCBAU 051107 could differentiate into swollen and nonswollen bacteroids in determinate root nodules of peanut (Arachis hypogaea) and indeterminate nodules of Sophora flavescens, respectively, with different N2 fixation efficiencies. To reveal the mechanism of bacteroid differentiation and symbiosis efficiency in association with different hosts, morphologies, transcriptomes, and nitrogen fixation efficiencies of the root nodules induced by strain CCBAU 051107 on these two plants were compared. Our results indicated that the nitrogenase activity of peanut nodules was 3 times higher than that of S. flavescens nodules, demonstrating the effects of rhizobium-host interaction on symbiotic effectiveness. With transcriptome comparisons, genes involved in biological nitrogen fixation (BNF) and energy metabolism were upregulated, while those involved in DNA replication, bacterial chemotaxis, and flagellar assembly were significantly downregulated in both types of bacteroids compared with those in free-living cells. However, expression levels of genes involved in BNF, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, hydrogenase synthesis, poly-β-hydroxybutyrate (PHB) degradation, and peptidoglycan biosynthesis were significantly greater in the swollen bacteroids of peanut than those in the nonswollen bacteroids of S. flavescens, while contrasting situations were found in expression of genes involved in urea degradation, PHB synthesis, and nitrogen assimilation. Especially higher expression of ureABEF and aspB genes in bacteroids of S. flavescens might imply that the BNF product and nitrogen transport pathway were different from those in peanut. Our study revealed the first differences in bacteroid differentiation and metabolism of these two hosts and will be helpful for us to explore higher-efficiency symbiosis between rhizobia and legumes. IMPORTANCE Rhizobial differentiation into bacteroids in leguminous nodules attracts scientists to investigate its different aspects. The development of bacteroids in the nodule of the important oil crop peanut was first investigated and compared to the status in the nodule of the extremely promiscuous medicinal legume Sophora flavescens by using just a single rhizobial strain of Bradyrhizobium arachidis, CCBAU 051107. This strain differentiates into swollen bacteroids in peanut nodules and nonswollen bacteroids in S. flavescens nodules. The N2-fixing efficiency of the peanut nodules is three times higher than that of S. flavescens. By comparing the transcriptomes of their bacteroids, we found that they have similar gene expression spectra, such as nitrogen fixation and motivity, but different spectra in terms of urease activity and peptidoglycan biosynthesis. Those altered levels of gene expression might be related to their functions and differentiation in respective nodules. Our studies provided novel insight into the rhizobial differentiation and metabolic alteration in different hosts.
Collapse
Affiliation(s)
- Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xiang Fei Meng
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Yin Shan Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - Jian Jiao
- State Key Laboratory of Agrobiotechnology, Beijing, People’s Republic of China
- College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, People’s Republic of China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Sheng Jun Ma
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang Uygur Autonomous Region, People’s Republic of China
| |
Collapse
|
5
|
Zaw M, Rathjen JR, Zhou Y, Ryder MH, Denton MD. Rhizobial diversity is associated with inoculation history at a two-continent scale. FEMS Microbiol Ecol 2022; 98:6567838. [PMID: 35416244 PMCID: PMC9329089 DOI: 10.1093/femsec/fiac044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 11/14/2022] Open
Abstract
A total of 120 Mesorhizobium strains collected from the central dry zone of Myanmar were analyzed in a pot experiment to evaluate nodulation and symbiotic effectiveness (SE%) in chickpea plants. Phylogenetic analyses revealed all strains belonged to the genus Mesorhizobium according to 16–23S rDNA IGS and the majority of chickpea nodulating rhizobia in Myanmar soils were most closely related to M. gobiense, M. muleiense, M. silamurunense, M. tamadayense and M. temperatum. Around two-thirds of the Myanmar strains (68%) were most closely related to Indian strain IC-2058 (CA-181), which is also most closely related to M. gobiense. There were no strains that were closely related to the cognate rhizobial species to nodulate chickpea: M. ciceri and M. mediterraneum. Strains with diverse 16S–23S rDNA IGS shared similar nodC and nifH gene sequences with chickpea symbionts. Detailed sequence analysis of nodC and nifH found that the strains in Myanmar were somewhat divergent from the group including M. ciceri and were more closely related to M. muleiense and IC-2058. A cross-continent analysis between strains isolated in Australia compared with Myanmar found that there was little overlap in species, where Australian soils were dominated with M. ciceri, M. temperatum and M. huakuii. The only co-occurring species found in both Myanmar and Australia were M. tamadayense and M. silumurunense. Continued inoculation with CC1192 may have reduced diversity of chickpea strains in Australian soils. Isolated strains in Australian and Myanmar had similar adaptive traits, which in some cases were also phylogenetically related. The genetic discrepancy between chickpea nodulating strains in Australia and Myanmar is not only due to inoculation history but to adaptation to soil conditions and crop management over a long period, and there has been virtually no loss of symbiotic efficiency over this time in strains isolated from soils in Myanmar.
Collapse
Affiliation(s)
- Myint Zaw
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia.,Yezin Agricultural University, Yezin, Naypyidaw 15013, Myanmar
| | - Judith R Rathjen
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Yi Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Maarten H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| | - Matthew D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA5064, Australia
| |
Collapse
|
6
|
Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile? Philos Trans R Soc Lond B Biol Sci 2022; 377:20200471. [PMID: 34839705 PMCID: PMC8628070 DOI: 10.1098/rstb.2020.0471] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/28/2021] [Indexed: 11/12/2022] Open
Abstract
Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium-legume symbiosis requires a 'mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Grace E. Wardell
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| | - Michael F. Hynes
- Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Peter J. Young
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Ellie Harrison
- Department of Animal Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 1EA, UK
| |
Collapse
|
7
|
Mendoza-Suárez M, Andersen SU, Poole PS, Sánchez-Cañizares C. Competition, Nodule Occupancy, and Persistence of Inoculant Strains: Key Factors in the Rhizobium-Legume Symbioses. FRONTIERS IN PLANT SCIENCE 2021; 12:690567. [PMID: 34489993 PMCID: PMC8416774 DOI: 10.3389/fpls.2021.690567] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/19/2021] [Indexed: 05/06/2023]
Abstract
Biological nitrogen fixation by Rhizobium-legume symbioses represents an environmentally friendly and inexpensive alternative to the use of chemical nitrogen fertilizers in legume crops. Rhizobial inoculants, applied frequently as biofertilizers, play an important role in sustainable agriculture. However, inoculants often fail to compete for nodule occupancy against native rhizobia with inferior nitrogen-fixing abilities, resulting in low yields. Strains with excellent performance under controlled conditions are typically selected as inoculants, but the rates of nodule occupancy compared to native strains are rarely investigated. Lack of persistence in the field after agricultural cycles, usually due to the transfer of symbiotic genes from the inoculant strain to naturalized populations, also limits the suitability of commercial inoculants. When rhizobial inoculants are based on native strains with a high nitrogen fixation ability, they often have superior performance in the field due to their genetic adaptations to the local environment. Therefore, knowledge from laboratory studies assessing competition and understanding how diverse strains of rhizobia behave, together with assays done under field conditions, may allow us to exploit the effectiveness of native populations selected as elite strains and to breed specific host cultivar-rhizobial strain combinations. Here, we review current knowledge at the molecular level on competition for nodulation and the advances in molecular tools for assessing competitiveness. We then describe ongoing approaches for inoculant development based on native strains and emphasize future perspectives and applications using a multidisciplinary approach to ensure optimal performance of both symbiotic partners.
Collapse
Affiliation(s)
| | - Stig U. Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philip S. Poole
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
8
|
Bamba M, Aoki S, Kajita T, Setoguchi H, Watano Y, Sato S, Tsuchimatsu T. Massive rhizobial genomic variation associated with partner quality in Lotus-Mesorhizobium symbiosis. FEMS Microbiol Ecol 2020; 96:5917975. [PMID: 33016310 DOI: 10.1093/femsec/fiaa202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/29/2020] [Indexed: 11/14/2022] Open
Abstract
Variation in partner quality is commonly observed in diverse cooperative relationships, despite the theoretical prediction that selection favoring high-quality partners should eliminate such variation. Here, we investigated how genetic variation in partner quality could be maintained in the nitrogen-fixing mutualism between Lotus japonicus and Mesorhizobium bacteria. We reconstructed de novo assembled full-genome sequences from nine rhizobial symbionts, finding massive variation in the core genome and the similar symbiotic islands, indicating recent horizontal gene transfer (HGT) of the symbiosis islands into diverse Mesorhizobium lineages. A cross-inoculation experiment using 9 sequenced rhizobial symbionts and 15 L. japonicus accessions revealed extensive quality variation represented by plant growth phenotypes, including genotype-by-genotype interactions. Variation in quality was not associated with the presence/absence variation in known symbiosis-related genes in the symbiosis island; rather, it showed significant correlation with the core genome variation. Given the recurrent HGT of the symbiosis islands into diverse Mesorhizobium strains, local Mesorhizobium communities could serve as a major source of variation for core genomes, which might prevent variation in partner quality from fixing, even in the presence of selection favoring high-quality partners. These findings highlight the novel role of HGT of symbiosis islands in maintaining partner quality variation in the legume-rhizobia symbiosis.
Collapse
Affiliation(s)
- Masaru Bamba
- Department of Biology (Frontier Science Program), Graduate School of Science and Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Seishiro Aoki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Tadashi Kajita
- Iriomote Station, Tropical Biosphere Research Center, The University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan
| | - Hiroaki Setoguchi
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yasuyuki Watano
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577, Japan
| | - Takashi Tsuchimatsu
- Department of Biology, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Liu J, Yu X, Qin Q, Dinkins RD, Zhu H. The Impacts of Domestication and Breeding on Nitrogen Fixation Symbiosis in Legumes. Front Genet 2020; 11:00973. [PMID: 33014021 PMCID: PMC7461779 DOI: 10.3389/fgene.2020.00973] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/31/2020] [Indexed: 01/12/2023] Open
Abstract
Legumes are the second most important family of crop plants. One defining feature of legumes is their unique ability to establish a nitrogen-fixing root nodule symbiosis with soil bacteria known as rhizobia. Since domestication from their wild relatives, crop legumes have been under intensive breeding to improve yield and other agronomic traits but with little attention paid to the belowground symbiosis traits. Theoretical models predict that domestication and breeding processes, coupled with high−input agricultural practices, might have reduced the capacity of crop legumes to achieve their full potential of nitrogen fixation symbiosis. Testing this prediction requires characterizing symbiosis traits in wild and breeding populations under both natural and cultivated environments using genetic, genomic, and ecological approaches. However, very few experimental studies have been dedicated to this area of research. Here, we review how legumes regulate their interactions with soil rhizobia and how domestication, breeding and agricultural practices might have affected nodulation capacity, nitrogen fixation efficiency, and the composition and function of rhizobial community. We also provide a perspective on how to improve legume-rhizobial symbiosis in sustainable agricultural systems.
Collapse
Affiliation(s)
- Jinge Liu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Xiaocheng Yu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Qiulin Qin
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Randy D Dinkins
- Forage-Animal Production Research Unit, United States Department of Agriculture-Agricultural Research Service, Lexington, KY, United States
| | - Hongyan Zhu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
10
|
Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species. Syst Appl Microbiol 2020; 43:126053. [PMID: 31937424 DOI: 10.1016/j.syapm.2020.126053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/30/2019] [Accepted: 01/01/2020] [Indexed: 01/01/2023]
Abstract
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.
Collapse
|