1
|
Biderre-Petit C, Courtine D, Hennequin C, Galand PE, Bertilsson S, Debroas D, Monjot A, Lepère C, Divne AM, Hochart C. A pan-genomic approach reveals novel Sulfurimonas clade in the ferruginous meromictic Lake Pavin. Mol Ecol Resour 2024; 24:e13923. [PMID: 38189173 DOI: 10.1111/1755-0998.13923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/26/2023] [Accepted: 12/21/2023] [Indexed: 01/09/2024]
Abstract
The permanently anoxic waters in meromictic lakes create suitable niches for the growth of bacteria using sulphur metabolisms like sulphur oxidation. In Lake Pavin, the anoxic water mass hosts an active cryptic sulphur cycle that interacts narrowly with iron cycling, however the metabolisms of the microorganisms involved are poorly known. Here we combined metagenomics, single-cell genomics, and pan-genomics to further expand our understanding of the bacteria and the corresponding metabolisms involved in sulphur oxidation in this ferruginous sulphide- and sulphate-poor meromictic lake. We highlighted two new species within the genus Sulfurimonas that belong to a novel clade of chemotrophic sulphur oxidisers exclusive to freshwaters. We moreover conclude that this genus holds a key-role not only in limiting sulphide accumulation in the upper part of the anoxic layer but also constraining carbon, phosphate and iron cycling.
Collapse
Affiliation(s)
- Corinne Biderre-Petit
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Damien Courtine
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Claire Hennequin
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pierre E Galand
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, CNRS, Sorbonne Universités, Banyuls sur Mer, France
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences and Science for Life Laboratory, Uppsala, Sweden
| | - Didier Debroas
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Arthur Monjot
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Cécile Lepère
- Laboratoire Microorganismes: Génome et Environnement, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Anna-Maria Divne
- Department of Cell and Molecular Biology, SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Corentin Hochart
- Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, CNRS, Sorbonne Universités, Banyuls sur Mer, France
| |
Collapse
|
2
|
Sriaporn C, Campbell KA, Van Kranendonk MJ, Handley KM. Bacterial and archaeal community distributions and cosmopolitanism across physicochemically diverse hot springs. ISME COMMUNICATIONS 2023; 3:80. [PMID: 37596308 PMCID: PMC10439147 DOI: 10.1038/s43705-023-00291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupō Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.0-7.5), and temperature (17.5-92.9 °C). Community composition, based on 16S rRNA amplicon sequence variants (ASVs) was strongly influenced by both temperature and pH. However, certain lineages characterized diverse hot springs. At the domain level, bacteria and archaea shared broadly equivalent community abundances across physico-chemically diverse springs, despite slightly lower bacteria-to-archaea ratios and microbial 16S rRNA gene concentrations at higher temperatures. Communities were almost exclusively dominated by Proteobacteria, Euryarchaeota or Crenarchaeota. Eight archaeal and bacterial ASVs from Thermoplasmatales, Desulfurellaceae, Mesoaciditogaceae and Acidithiobacillaceae were unusually prevalent (present in 57.9-84.2% of samples) and abundant (1.7-12.0% sample relative abundance), and together comprised 44% of overall community abundance. Metagenomic analyses generated multiple populations associated with dominant ASVs, and showed characteristic traits of each lineage for sulfur, nitrogen and hydrogen metabolism. Differences in metabolic gene composition and genome-specific metabolism delineated populations from relatives. Genome coverage calculations showed that populations associated with each lineage were distributed across a physicochemically broad range of hot springs. Results imply that certain bacterial and archaeal lineages harbor different population structures and metabolic potentials for colonizing diverse hot spring environments.
Collapse
Affiliation(s)
- Chanenath Sriaporn
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Kathleen A Campbell
- School of Environment & Te Ao Mārama - Centre for Fundamental Inquiry, The University of Auckland, Auckland, New Zealand
| | - Martin J Van Kranendonk
- Australian Centre for Astrobiology, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
3
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
4
|
Brenes-Guillén L, Vidaurre-Barahona D, Avilés-Vargas L, Castro-Gutierrez V, Gómez-Ramírez E, González-Sánchez K, Mora-López M, Umaña-Villalobos G, Uribe-Lorío L, Hassard F. First insights into the prokaryotic community structure of Lake Cote, Costa Rica: Influence on nutrient cycling. Front Microbiol 2022; 13:941897. [PMID: 36262328 PMCID: PMC9574093 DOI: 10.3389/fmicb.2022.941897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Prokaryotic diversity in lakes has been studied for many years mainly focusing on community structure and how the bacterial assemblages are driven by physicochemical conditions such as temperature, oxygen, and nutrients. However, little is known about how the composition and function of the prokaryotic community changes upon lake stratification. To elucidate this, we studied Lake Cote in Costa Rica determining prokaryotic diversity and community structure in conjunction with physicochemistry along vertical gradients during stratification and mixing periods. Of the parameters measured, ammonium, oxygen, and temperature, in that order, were the main determinants driving the variability in the prokaryotic community structure of the lake. Distinct stratification of Lake Cote occurred (March 2018) and the community diversity was compared to a period of complete mixing (March 2019). The microbial community analysis indicated that stratification significantly altered the bacterial composition in the epi-meta- and hypolimnion. During stratification, the Deltaproteobacteria, Chloroflexi, Bacteroidetes, Nitrospirae, and Euryarchaeota were dominant in the hypolimnion yet largely absent in surface layers. Among these taxa, strict or facultative anaerobic bacteria were likely contributing to the lake nitrogen biogeochemical cycling, consistent with measurements of inorganic nitrogen measurements and microbial functional abundance predictions. In general, during both sampling events, a higher abundance of Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Cyanobacteria was found in the oxygenated layers. Lake Cote had a unique bacterial diversity, with 80% of Amplicon Sequence Variant (ASV) recovered similar to unclassified/uncultured strains and exhibits archetypal shallow lake physicochemical but not microbial fluctuations worthy of further investigation. This study provides an example of lake hydrodynamics impacts to microbial community and their function in Central American lakes with implications for other shallow, upland, and oligotrophic lake systems.
Collapse
Affiliation(s)
- Laura Brenes-Guillén
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | | | - Lidia Avilés-Vargas
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | | | - Eddy Gómez-Ramírez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Kaylen González-Sánchez
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Marielos Mora-López
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Gerardo Umaña-Villalobos
- Research Center in Sciences of the Sea and Limnology, University of Costa Rica, San José, Costa Rica
| | - Lorena Uribe-Lorío
- Cellular and Molecular Biology Research Center, University of Costa Rica, San José, Costa Rica
| | - Francis Hassard
- Cranfield Water Science Institute, Cranfield University, Cranfield, United Kingdom
- Institute for Nanotechnology and Water Sustainability, University of South Africa, Johannesburg, South Africa
- *Correspondence: Francis Hassard,
| |
Collapse
|
5
|
Salmaso N, Vasselon V, Rimet F, Vautier M, Elersek T, Boscaini A, Donati C, Moretto M, Pindo M, Riccioni G, Stefani E, Capelli C, Lepori F, Kurmayer R, Mischke U, Klemenčič AK, Novak K, Greco C, Franzini G, Fusato G, Giacomazzi F, Lea A, Menegon S, Zampieri C, Macor A, Virgilio D, Zanut E, Zorza R, Buzzi F, Domaizon I. DNA sequence and taxonomic gap analyses to quantify the coverage of aquatic cyanobacteria and eukaryotic microalgae in reference databases: Results of a survey in the Alpine region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155175. [PMID: 35421505 DOI: 10.1016/j.scitotenv.2022.155175] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The taxonomic identification of organisms based on the amplification of specific genetic markers (metabarcoding) implicitly requires adequate discriminatory information and taxonomic coverage of environmental DNA sequences in taxonomic databases. These requirements were quantitatively examined by comparing the determination of cyanobacteria and microalgae obtained by metabarcoding and light microscopy. We used planktic and biofilm samples collected in 37 lakes and 22 rivers across the Alpine region. We focused on two of the most used and best represented genetic markers in the reference databases, namely the 16S rRNA and 18S rRNA genes. A sequence gap analysis using blastn showed that, in the identity range of 99-100%, approximately 30% (plankton) and 60% (biofilm) of the sequences did not find any close counterpart in the reference databases (NCBI GenBank). Similarly, a taxonomic gap analysis showed that approximately 50% of the cyanobacterial and eukaryotic microalgal species identified by light microscopy were not represented in the reference databases. In both cases, the magnitude of the gaps differed between the major taxonomic groups. Even considering the species determined under the microscope and represented in the reference databases, 22% and 26% were still not included in the results obtained by the blastn at percentage levels of identity ≥95% and ≥97%, respectively. The main causes were the absence of matching sequences due to amplification and/or sequencing failure and potential misidentification in the microscopy step. Our results quantitatively demonstrated that in metabarcoding the main obstacles in the classification of 16S rRNA and 18S rRNA sequences and interpretation of high-throughput sequencing biomonitoring data were due to the existence of important gaps in the taxonomic completeness of the reference databases and the short length of reads. The study focused on the Alpine region, but the extent of the gaps could be much greater in other less investigated geographic areas.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Valentin Vasselon
- OFB, Pôle R&D ECLA, Site INRAE CARRTEL, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Frédéric Rimet
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Marine Vautier
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| | - Tina Elersek
- National Institute of Biology, Večna pot 111, 1000 Ljubljana, Slovenia.
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Marco Moretto
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Giulia Riccioni
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy
| | - Erika Stefani
- Research and Innovation Centre, Fondazione Edmund Mach, via E. Mach 1, 38098 San Michele all'Adige, Italy.
| | - Camilla Capelli
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Fabio Lepori
- Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland (SUPSI), Via Flora Ruchat-Roncati 15, 6850 Mendrisio, Switzerland.
| | - Rainer Kurmayer
- Research Department for Limnology, University of Innsbruck, Mondseestraße 9, 5310 Mondsee, Austria.
| | - Ute Mischke
- Bavarian Environment Agency, Ref. 83, Wielenbach, Germany.
| | | | - Katarina Novak
- Slovenian Environment Agency, Vojkova 1b, 1000 Ljubljana, Slovenia.
| | - Claudia Greco
- Italian National Institute for Environmental Protection and Research (ISPRA), Ozzano, Italy.
| | - Giorgio Franzini
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Giampaolo Fusato
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Federica Giacomazzi
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Alessia Lea
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Ospedale Civile 24, 35121 Padova, Italy.
| | - Silvia Menegon
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via Santa Barbara 5/a, 31100 Treviso, Italy.
| | - Chiara Zampieri
- ARPAV, Regional Agency for Environmental Protection and Prevention of Veneto, Via A. Dominutti 8, 37135 Verona, Italy.
| | - Arianna Macor
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Damiano Virgilio
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Elisa Zanut
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Raffaella Zorza
- ARPA FVG, Regional Environmental Protection Agency of Friuli Venezia Giulia, Via Cairoli 14, 33057 Palmanova, UD, Italy.
| | - Fabio Buzzi
- ARPA Lombardia, Sede di Lecco, U.O. Laghi e Monitoraggio Biologico Fiumi, Italy.
| | - Isabelle Domaizon
- INRAE, UMR Carrtel, Université Savoie Mont Blanc, Pole R&D ECLA, 75bis av. de Corzent - CS 50511, FR-74203 Thonon les Bains cedex, France.
| |
Collapse
|
6
|
Chen J, Liu H, Bai Y, Qi J, Qi W, Liu H, Peng J, Qu J. Mixing regime shapes the community assembly process, microbial interaction and proliferation of cyanobacterial species Planktothrix in a stratified lake. J Environ Sci (China) 2022; 115:103-113. [PMID: 34969441 DOI: 10.1016/j.jes.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/14/2023]
Abstract
Lake mixing influences aquatic chemical properties and microbial community composition, and thus, we hypothesized that it would alter microbial community assembly and interaction. To clarify this issue, we explored the community assembly processes and cooccurrence networks in four seasons at two depths (epilimnion and hypolimnion) in a mesotrophic and stratified lake (Chenghai Lake), which formed stratification in the summer and turnover in the winter. During the stratification period, the epilimnion and hypolimnion went through contrary assembly processes but converged to similar assembly patterns in the mixing period. In a highly homogeneous selection environment, species with low niche breadth were filtered, resulting in decreased species richness. Water mixing in the winter homogenized the environment, resulting in a simpler microbial cooccurrence network. Interestingly, we observed a high abundance of the cyanobacterial genus Planktothrix in the winter, probably due to nutrient redistribution and Planktothrix adaptivity to the winter environment in which mixing played important roles. Our study provides deeper fundamental insights into how environmental factors influence microbial community structure through community assembly processes.
Collapse
Affiliation(s)
- Junwen Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huacong Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaohui Bai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Qi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianfeng Peng
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Aguilar P, Vila I, Sommaruga R. Bacterioplankton Zonation Does Exist in High Elevation, Polymictic Lakes. Front Microbiol 2022; 13:764566. [PMID: 35250918 PMCID: PMC8891803 DOI: 10.3389/fmicb.2022.764566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/25/2022] [Indexed: 01/04/2023] Open
Abstract
The assessment of distribution patterns or zonation of planktonic microbes along the water column is a crucial step to interpret their function in the ecosystem. In lakes without seasonal thermal stratification or polymictic systems such as high elevation tropical lakes, planktonic bacterial taxa are probably homogeneously distributed in the water column in contrast to what is known for thermally stratified lakes. However, we know little about bacterial distribution patterns in polymictic lakes and their relation to environmental gradients other than temperature. Here we assessed the diversity, microdiversity, and bacterial community composition at different discrete depths in three high elevation lakes (4,400-4,550 m above sea level) from the Andean plateau to test whether bacterial zonation patterns exist along the water column. For this objective, we analyzed bulk DNA and the putatively active fraction (cDNA) of the 16S rRNA gene. Although a clear gradient of temperature and oxygen was not detected along the water column, a significant vertical spatial zonation of the bacterial communities was present in two out of the three lakes, with microdiversity contributing to such pattern. Our results provide a reference for understanding how changing environmental conditions could affect high elevation aquatic ecosystems, particularly when warming is amplified with elevation, accelerating changes in hydrological regimes and biodiversity. Finally, our results highlight the importance of incorporating the whole water column in ecological studies of aquatic ecosystems lacking temporal or permanent thermal stratification.
Collapse
Affiliation(s)
- Pablo Aguilar
- Lake and Glacier Ecology Research Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
- Núcleo Milenio INVASAL, Concepción, Chile
| | - Irma Vila
- Núcleo Milenio INVASAL, Concepción, Chile
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ruben Sommaruga
- Lake and Glacier Ecology Research Group, Department of Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Borics G, Abonyi A, Salmaso N, Ptacnik R. Freshwater phytoplankton diversity: models, drivers and implications for ecosystem properties. HYDROBIOLOGIA 2020; 848:53-75. [PMID: 32836348 PMCID: PMC7334633 DOI: 10.1007/s10750-020-04332-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 05/20/2023]
Abstract
Our understanding on phytoplankton diversity has largely been progressing since the publication of Hutchinson on the paradox of the plankton. In this paper, we summarise some major steps in phytoplankton ecology in the context of mechanisms underlying phytoplankton diversity. Here, we provide a framework for phytoplankton community assembly and an overview of measures on taxonomic and functional diversity. We show how ecological theories on species competition together with modelling approaches and laboratory experiments helped understand species coexistence and maintenance of diversity in phytoplankton. The non-equilibrium nature of phytoplankton and the role of disturbances in shaping diversity are also discussed. Furthermore, we discuss the role of water body size, productivity of habitats and temperature on phytoplankton species richness, and how diversity may affect the functioning of lake ecosystems. At last, we give an insight into molecular tools that have emerged in the last decades and argue how it has broadened our perspective on microbial diversity. Besides historical backgrounds, some critical comments have also been made.
Collapse
Affiliation(s)
- Gábor Borics
- Department of Tisza Research, Centre for Ecological Research, Danube Research Institute, Bem tér 18/c, 4026 Debrecen, Hungary
- GINOP Sustainable Ecosystems Group, Centre for Ecological Research, Klebelsberg Kuno u. 3, 8237 Tihany, Hungary
| | - András Abonyi
- Centre for Ecological Research, Institute of Ecology and Botany, Alkotmány u. 2-4, 2163 Vácrátót, Hungary
- WasserCluster Lunz – Biologische Station GmbH, Dr. Carl Kupelwieser-Promenade 5, 3293 Lunz am See, Austria
| | - Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
| | - Robert Ptacnik
- WasserCluster Lunz – Biologische Station GmbH, Dr. Carl Kupelwieser-Promenade 5, 3293 Lunz am See, Austria
| |
Collapse
|
9
|
Salmaso N, Boscaini A, Pindo M. Unraveling the Diversity of Eukaryotic Microplankton in a Large and Deep Perialpine Lake Using a High Throughput Sequencing Approach. Front Microbiol 2020; 11:789. [PMID: 32457713 PMCID: PMC7221148 DOI: 10.3389/fmicb.2020.00789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/02/2020] [Indexed: 11/28/2022] Open
Abstract
The structure of microbial communities, microalgae, heterotrophic protozoa and fungi contributes to characterize food webs and productivity and, from an anthropogenic point of view, the qualitative characteristics of water bodies. Traditionally, in freshwater environments many investigations have been directed to the study of pelagic microalgae (“phytoplankton”) and periphyton (i.e., photosynthetic and mixotrophic protists) through the use of light microscopy (LM). While the number of studies on bacterioplankton communities have shown a substantial increase after the advent of high-throughput sequencing (HTS) approaches, the study of the composition, structure, and spatio-temporal patterns of microbial eukaryotes in freshwater environments was much less widespread. Moreover, the understanding of the correspondence between the relative phytoplankton abundances estimated by HTS and LM is still incomplete. Taking into account these limitations, this study examined the biodiversity and seasonality of the community of eukaryotic microplankton in the epilimnetic layer of a large and deep perialpine lake (Lake Garda) using HTS. The analyses were carried out at monthly frequency during 2014 and 2015. The results highlighted the existence of a rich and well diversified community and the presence of numerous phytoplankton taxa that were never identified by LM in previous investigations. Furthermore, the relative abundances of phytoplankton estimated by HTS and LM showed a significant relationship at different taxonomic ranks. In the 2 years of investigation, the temporal development of the whole micro-eukaryotic community showed a clear non-random and comparable distribution pattern, with the main taxonomic groups coherently distributed in the individual seasons. In perspective, the results obtained in this study highlight the importance of HTS approaches in assessing biodiversity and the relative importance of the main protist groups along environmental gradients, including those caused by anthropogenic impacts (e.g., eutrophication and climate change).
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| |
Collapse
|