1
|
Tajik A, Samadlouie HR, Salek Farrokhi A, Ghasemi A. Optimization of chemical conditions for metabolites production by Ganoderma lucidum using response surface methodology and investigation of antimicrobial as well as anticancer activities. Front Microbiol 2024; 14:1280405. [PMID: 38318131 PMCID: PMC10839005 DOI: 10.3389/fmicb.2023.1280405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Ganoderma lucidum (G. lucidum) is a medicinal mushroom that is known for its ability to produce compounds with physiological effects on human health. This research was undertaken to amplify the production of bioactive components of G. lucidum under optimal cultivation conditions, obtained in a submerged state and utilized in solid state fermentation, with the purpose of enhancing antimicrobial and anticancer activities. The results indicated that titanium dioxide (TiO2 NPs), magnesium oxide nanoparticles (MgO2 NPs), and B6, along with glucose syrup and CLS syrups, were the most effective for producing GA, while wheat starch and whey protein, along with MgO2 NPs and B6 vitamin, stimulated polysaccharide production using the One Factor at a Time (OFAT) method. After screening, the response surface method (RSM) statistically indicated that the media containing 42.11 g/L wheat starch with 22 g/L whey protein and 50 g/L glucose syrup with 30 g/L CSL were found to be the best conditions for polysaccharide (21.47% of dry weight biomass) and GA (20.35 mg/g dry weight biomass) production, respectively. The moss of the fruit body of G. lucidum produced under optimal GA conditions had the highest diversity in flavonoids and phenolic acids and significant antimicrobial activity against Esherichia coli (E. coli) and Bacillus subtilis (B. subtilis). In addition, the IC50 levels of shell and stem of G. lucidum were 465.3 and 485.7 μg/mL, respectively, while the moss did not reach 50% inhibition. In the end, the statistical approaches utilized in this research to elevate the levels of bioactive components in the fruiting body of G. lucidum produced a promising natural source of antimicrobial and anticancer agents.
Collapse
Affiliation(s)
- Alireza Tajik
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | - Hamid Reza Samadlouie
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| | | | - Amir Ghasemi
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran
| |
Collapse
|
2
|
Lau MF, Phan CW, Sabaratnam V, Kuppusamy UR. Bibliometric, taxonomic, and medicinal perspectives of Ganoderma neo-japonicum Imazeki: A mini review. Mycology 2024; 15:360-373. [PMID: 39247898 PMCID: PMC11376291 DOI: 10.1080/21501203.2024.2302028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/01/2024] [Indexed: 09/10/2024] Open
Abstract
Ganoderma, a traditional medicine in Asian countries, has been used to prevent and treat various ailments for centuries. Ganoderma neo-japonicum (synonym Ganoderma bambusicola), also known as purple Lingzhi, is a species that is currently underutilised when compared to Ganoderma lucidum (Lingzhi). However, in recent decades, this mushroom has garnered significant attention due to its ethnomedicinal uses, especially in Southeast Asia regions like Malaysia. The taxonomy and nomenclature of this mushroom have been extensively studied. Numerous publications have reported that G. neo-japonicum displays a variety of medicinal properties, including antioxidation, anticancer, anti-hyperglycaemic, genoprotective, hepatoprotective, neuritogenic, and antidiabetic effects, both in vitro and in vivo. With the surge of research findings on this mushroom, this review aims to provide a systematic bibliometric analysis of G. neo-japonicum, published between 1991 to 2021. Additionally, the taxonomic description of this mushroom is discussed in detail. Our review reveals that G. neo-japonicum contains polysaccharides (α/β-D-glucans), triterpenoids, and sterols/ergosterol. However, the existing literature suggests that these active compounds have not yet been explored to their full potential as drug candidates. Moreover, most of the studies are preclinical and have several drawbacks. In conclusion, G. neo-japonicum possesses valuable pharmacological activities that merit further exploration.
Collapse
Affiliation(s)
- Meng Fei Lau
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Umah Rani Kuppusamy
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Mushroom Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Sun X, Wang J, Cheng M, Qi Y, Han C. Strategies to Increase the Production of Triterpene Acids in Ligzhi or Reishi Medicinal Mushroom (Ganoderma lucidum, Agaricomycetes): A Review. Int J Med Mushrooms 2024; 26:25-41. [PMID: 38780421 DOI: 10.1615/intjmedmushrooms.2024052871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Ganoderic acids (GAs) are the main active ingredient of Ganoderma lucidum, which has been widely accepted as a medicinal mushroom. Due to the low yield of GAs produced by liquid cultured Ganoderma mycelium and solid cultured fruiting bodies, the commercial production and clinical application of GAs are limited. Therefore, it is important to increase the yield of GA in G. lucidum. A comprehensive literature search was performed with no set data range using the following keywords such as "triterpene," "ganoderic acids," "Ganoderma lucidum," and "Lingzhi" within the main databases including Web of Science, PubMed, and China National Knowledge Infrastructure (CNKI). The data were screened using titles and abstracts and those relevant to the topic were included in the paper and was not limited to studies published in English. Present review focuses on the four aspects: fermentation conditions and substrate, extrinsic elicitor, genetic engineering, and mutagenesis, which play significant roles in increasing triterpene acids production, thus providing an available reference for further research on G. lucidum fermentation.
Collapse
Affiliation(s)
- Xiaomei Sun
- Shandong University of Traditional Chinese Medicine
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Mengtao Cheng
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Yitong Qi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
4
|
Zhao T, Dong Q, Zhou H, Yang H. Drying kinetics, physicochemical properties, antioxidant activity and antidiabetic potential of Sargassum fusiforme processed under four drying techniques. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Khoo SC, Ma NL, Peng WX, Ng KK, Goh MS, Chen HL, Tan SH, Lee CH, Luang-In V, Sonne C. Valorisation of biomass and diaper waste into a sustainable production of the medical mushroom Lingzhi Ganoderma lucidum. CHEMOSPHERE 2022; 286:131477. [PMID: 34303046 DOI: 10.1016/j.chemosphere.2021.131477] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/21/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Global solid waste is expected to increase by at least 70% annually until year 2050. The mixture of solid waste including food waste from food industry and domestic diaper waste in landfills is causing environmental and human health issues. Nevertheless, food and diaper waste containing high lignocellulose can easily degrade using lignocellulolytic enzymes thereby converted into energy for the development and growth of mushroom. Therefore, this study explores the potential of recycling biomass waste from coffee ground, banana, eggshell, tea waste, sugarcane bagasse and sawdust and diaper waste as raw material for Lingzhi mushroom (Ganoderma lucidum) cultivation. Using 2% of diaper core with sawdust biowaste leading to the fastest 100% mushroom mycelium spreading completed in one month. The highest production yield is 71.45 g mushroom; this represents about 36% production biological efficiency compared to only 21% as in commercial substrate. The high mushroom substrate reduction of 73% reflect the valorisation of landfill waste. The metabolomics profiling showed that the Lingzhi mushroom produced is of high quality with a high content of triterpene being the bioactive compounds that are medically important for treating assorted disease and used as health supplement. In conclusion, our study proposed a potential resource management towards zero-waste and circular bioeconomy for high profitable mushroom cultivation.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Nyuk Ling Ma
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan Xi Peng
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kah Kei Ng
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Meng Shien Goh
- Faculty of Science and Marine Environment, University Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Hui Ling Chen
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Suat Hian Tan
- Facutly of Industrial Sciences & Technology, Universiti Malaysia Pahang, Gambang, 26300, Pahang, Malaysia
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Mahasarakham, 44150, Thailand
| | - Christian Sonne
- Henan Province International Collaboration Lab of Forest Resources Utilization, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Bioscience, Aarhus University, Arctic Research Center (ARC), Frederiksborgvej 399, PO box 358, DK- 4000, Roskilde, Denmark.
| |
Collapse
|
6
|
Methionine Sulfoxide Reductase B Regulates the Activity of Ascorbate Peroxidase of Banana Fruit. Antioxidants (Basel) 2021; 10:antiox10020310. [PMID: 33670705 PMCID: PMC7922979 DOI: 10.3390/antiox10020310] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/13/2022] Open
Abstract
Ascorbate peroxidase (APX) is a key antioxidant enzyme that is involved in diverse developmental and physiological process and stress responses by scavenging H2O2 in plants. APX itself is also subjected to multiple posttranslational modifications (PTMs). However, redox-mediated PTM of APX in plants remains poorly understood. Here, we identified and confirmed that MaAPX1 interacts with methionine sulfoxide reductase B2 (MsrB2) in bananas. Ectopic overexpression of MaAPX1 delays the detached leaf senescence induced by darkness in Arabidopsis. Sulfoxidation of MaAPX1, i.e., methionine oxidation, leads to loss of the activity, which is repaired partially by MaMsrB2. Moreover, mimicking sulfoxidation by mutating Met36 to Gln also decreases its activity in vitro and in vivo, whereas substitution of Met36 with Val36 to mimic the blocking of sulfoxidation has little effect on APX activity. Spectral analysis showed that mimicking sulfoxidation of Met36 hinders the formation of compound I, the first intermediate between APX and H2O2. Our findings demonstrate that the redox state of methionine in MaAPX1 is critical to its activity, and MaMsrB2 can regulate the redox state and activity of MaAPX1. Our results revealed a novel post-translational redox modification of APX.
Collapse
|
7
|
Mishra RC, Kumari R, Yadav JP. Comparative antidandruff efficacy of plant extracts prepared from conventional and supercritical fluid extraction method and chemical profiling using GCMS. J DERMATOL TREAT 2020; 33:989-995. [PMID: 32691649 DOI: 10.1080/09546634.2020.1799919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND To combat dandruff associated pathogens, supercritical fluid extraction (SFE) can be used as an alternative eco-friendly technique to obtain antimicrobial plant extracts over conventional methods. OBJECTIVES The purpose of the study was to compare the yield and antimicrobial potential of extracts obtained by different extraction methods. METHODS Extraction was carried out by cold percolation method using ethyl acetate (EA) and SFE using CO2. Antimicrobial activity was studied against dandruff causing microbes; Malassezia furfur, Propionibacterium acne, and Staphylococcus epidermidis by agar well diffusion and micro broth dilution method. Statistical evaluation was done by principal component analysis (PCA). RESULTS The yield was found higher in the ethyl acetate extracts. PCA indicated that among the sixteen extracts, SFE extract of Azadirachta indica leaves was the most influential with the highest F1 score and maximum antimicrobial activity. Cinnamomum zeylanicum SFE extract demonstrated the lowest MIC against P. acne and M. furfur. GC-MS analysis of A. indica extract inferred that ganoderic acid, 13,14-epoxyoleanan-3-ol acetate, henicosanal, 2-heptadecycloxirane were the major phytoconstituents whereas cinnamaldehyde, α- muurolene and caffeic acid were primarily found in cinnamon. CONCLUSION Bioactive compounds identified in the extracts of A. indica and C. zeylanicum can be used in natural antidandruff products.
Collapse
Affiliation(s)
| | - Rosy Kumari
- Department of Genetics, Maharshi Dayanand University, Rohtak, India
| | | |
Collapse
|