1
|
Dong Z, Li L, Du G, Zhang Y, Wang X, Li S, Xiang W. A previously unidentified sugar transporter for engineering of high-yield Streptomyces. Appl Microbiol Biotechnol 2024; 108:72. [PMID: 38194147 DOI: 10.1007/s00253-023-12964-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 01/10/2024]
Abstract
Sugar transporters have significant contributions to regulate metabolic flux towards products and they are general potential targets for engineering of high-yield microbial cell factories. Streptomyces, well-known producers of natural product pharmaceuticals, contain an abundance of sugar transporters, while few of them are well characterized and applied. Here, we report a previously unidentified ATP-binding cassette (ABC) sugar transporter TP6568 found within a Streptomyces avermitilis transposon library, along with its key regulator GM006564. Subsequent in silico molecular docking and genetic experiments demonstrated that TP6568 possessed a broad substrate specificity. It could not only promote uptake of diverse monosaccharides and disaccharides, but also enhance the utilization of industrial carbon sources such as starch, sucrose, and dextrin. Constitutive overexpression of TP6568 resulted in decrease of residual total sugar by 36.16%, 39.04%, 38.40%, and 30.21% in engineered S. avermitilis S0, Streptomyces caniferus NEAU6, Streptomyces bingchenggensis BC-101-4, and Streptomyces roseosporus NRRL 11379 than their individual parent strain, respectively. Production of avermectin B1a, guvermectin, and milbemycin A3/A4 increased by 75.61%, 56.89%, and 41.13%, respectively. We then overexpressed TP6568 in combination with the regulator GM006564 in a high-yield strain S. avermitilis S45, and further fine-tuning of their overexpression levels boosted production of avermectin B1a by 50.97% to 7.02 g/L in the engineering strain. Our work demonstrates that TP6568 as a promising sugar transporter may have broad applications in construction of high-yield Streptomyces microbial cell factories for desirable natural product pharmaceuticals. KEY POINTS: • TP6568 from Streptomyces avermitilis was identified as a sugar transporter • TP6568 enhanced utilization of diverse industrially used sugars in Streptomyces • TP6568 is a useful transporter to construct high-yield Streptomyces cell factories.
Collapse
Affiliation(s)
- Zhuoxu Dong
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Li
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guozhong Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yanyan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China
| | - Shanshan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
März C, Nölting S, Wollenschläger L, Pühler A, Kalinowski J. Role of MalQ Enzyme in a Reconstructed Maltose/Maltodextrin Pathway in Actinoplanes sp. SE50/110. Microorganisms 2024; 12:1221. [PMID: 38930603 PMCID: PMC11205506 DOI: 10.3390/microorganisms12061221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The pseudotetrasaccharide acarbose, produced by Actinoplanes sp. SE50/110, is a relevant secondary metabolite used in diabetes type II medication. Although maltose plays a crucial role in acarbose biosynthesis, the understanding of the maltose/maltodextrin metabolism and its involvement in acarbose production is at an early stage. Here, we reconstructed the predicted maltose-maltodextrin pathway that involves four enzymes AmlE, MalZ, MalP, and MalQ. An investigation of enzyme activities was conducted through in vitro assays, leading to an expansion of previously postulated substrate spectra. The maltose-induced α-glucosidase AmlE is noteworthy for its high hydrolysis rate of linear α-1,4-glucans, and its capability to hydrolyze various glycosidic bonds. The predicted maltodextrin glucosidase MalZ showed slow hydrolysis activity on linear α-glucans, but it was resistant to acarbose and capable of releasing glucose from acarbose. AmlE compensates for the low activity of MalZ to ensure glucose supply. We determined the enzyme activity of MalP and its dual function as maltodextrin and glycogen phosphorylase. The 4-α-glucanotransferase MalQ plays a central role in the maltose/maltodextrin metabolism, alongside MalP. This study confirmed the simultaneous degradation and synthesis of long-chain α-glucans. The product distribution showed that with an increasing number of glycosidic bonds, less glucose is formed. We found that MalQ, like its sequence homolog AcbQ from the acarbose biosynthetic gene cluster, is involved in the formation of elongated acarviosyl metabolites. However, MalQ does not participate in the elongation of acarbose 7-phosphate, which is likely the more readily available acceptor molecule in vivo. Accordingly, MalQ is not involved in the formation of acarviosyl impurities in Actinoplanes sp. SE50/110.
Collapse
Affiliation(s)
- Camilla März
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (C.M.); (S.N.); (L.W.)
| | - Sophia Nölting
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (C.M.); (S.N.); (L.W.)
| | - Lars Wollenschläger
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (C.M.); (S.N.); (L.W.)
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany;
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, 33615 Bielefeld, Germany; (C.M.); (S.N.); (L.W.)
| |
Collapse
|
3
|
Droste J, Ortseifen V, Schaffert L, Persicke M, Schneiker-Bekel S, Pühler A, Kalinowski J. The expression of the acarbose biosynthesis gene cluster in Actinoplanes sp. SE50/110 is dependent on the growth phase. BMC Genomics 2020; 21:818. [PMID: 33225887 PMCID: PMC7682106 DOI: 10.1186/s12864-020-07194-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/26/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Actinoplanes sp. SE50/110 is the natural producer of the diabetes mellitus drug acarbose, which is highly produced during the growth phase and ceases during the stationary phase. In previous works, the growth-dependency of acarbose formation was assumed to be caused by a decreasing transcription of the acarbose biosynthesis genes during transition and stationary growth phase. RESULTS In this study, transcriptomic data using RNA-seq and state-of-the-art proteomic data from seven time points of controlled bioreactor cultivations were used to analyze expression dynamics during growth of Actinoplanes sp. SE50/110. A hierarchical cluster analysis revealed co-regulated genes, which display similar transcription dynamics over the cultivation time. Aside from an expected metabolic switch from primary to secondary metabolism during transition phase, we observed a continuously decreasing transcript abundance of all acarbose biosynthetic genes from the early growth phase until stationary phase, with the strongest decrease for the monocistronically transcribed genes acbA, acbB, acbD and acbE. Our data confirm a similar trend for acb gene transcription and acarbose formation rate. Surprisingly, the proteome dynamics does not follow the respective transcription for all acb genes. This suggests different protein stabilities or post-transcriptional regulation of the Acb proteins, which in turn could indicate bottlenecks in the acarbose biosynthesis. Furthermore, several genes are co-expressed with the acb gene cluster over the course of the cultivation, including eleven transcriptional regulators (e.g. ACSP50_0424), two sigma factors (ACSP50_0644, ACSP50_6006) and further genes, which have not previously been in focus of acarbose research in Actinoplanes sp. SE50/110. CONCLUSION In conclusion, we have demonstrated, that a genome wide transcriptome and proteome analysis in a high temporal resolution is well suited to study the acarbose biosynthesis and the transcriptional and post-transcriptional regulation thereof.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Vera Ortseifen
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany
| | - Susanne Schneiker-Bekel
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Sequenz 1, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Sequenz 1, Bielefeld, 33615, Germany.
| |
Collapse
|
4
|
Droste J, Kulisch M, Wolf T, Schaffert L, Schneiker-Bekel S, Pühler A, Kalinowski J. A maltose-regulated large genomic region is activated by the transcriptional regulator MalT in Actinoplanes sp. SE50/110. Appl Microbiol Biotechnol 2020; 104:9283-9294. [PMID: 32989516 PMCID: PMC7567727 DOI: 10.1007/s00253-020-10923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/25/2022]
Abstract
Actinoplanes sp. SE50/110 is the industrially relevant producer of acarbose, which is used in the treatment of diabetes mellitus. Recent studies elucidated the expression dynamics in Actinoplanes sp. SE50/110 during growth. From these data, we obtained a large genomic region (ACSP50_3900 to ACSP50_3950) containing 51 genes, of which 39 are transcribed in the same manner. These co-regulated genes were found to be stronger transcribed on maltose compared with glucose as a carbon source. The transcriptional regulator MalT was identified as an activator of this maltose-regulated large genomic region (MRLGR). Since most of the genes are poorly annotated, the function of this region is farther unclear. However, comprehensive BLAST analyses indicate similarities to enzymes involved in amino acid metabolism. We determined a conserved binding motif of MalT overlapping the -35 promoter region of 17 transcription start sites inside the MRLGR. The corresponding sequence motif 5'-TCATCC-5nt-GGATGA-3' displays high similarities to reported MalT binding sites in Escherichia coli and Klebsiella pneumoniae, in which MalT is the activator of mal genes. A malT deletion and an overexpression mutant were constructed. Differential transcriptome analyses revealed an activating effect of MalT on 40 of the 51 genes. Surprisingly, no gene of the maltose metabolism is affected. In contrast to many other bacteria, MalT is not the activator of mal genes in Actinoplanes sp. SE50/110. Finally, the MRLGR was found partly in other closely related bacteria of the family Micromonosporaceae. Even the conserved MalT binding site was found upstream of several genes inside of the corresponding regions. KEY POINTS : • MalT is the maltose-dependent activator of a large genomic region in ACSP50_WT. • The consensus binding motif is similar to MalT binding sites in other bacteria. • MalT is not the regulator of genes involved in maltose metabolism in ACSP50_WT.
Collapse
Affiliation(s)
- Julian Droste
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Martin Kulisch
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Timo Wolf
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Lena Schaffert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Susanne Schneiker-Bekel
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Alfred Pühler
- Senior Research Group in Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615, Bielefeld, Germany.
| |
Collapse
|
5
|
Absence of the highly expressed small carbohydrate-binding protein Cgt improves the acarbose formation in Actinoplanes sp. SE50/110. Appl Microbiol Biotechnol 2020; 104:5395-5408. [PMID: 32346757 PMCID: PMC7275007 DOI: 10.1007/s00253-020-10584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/06/2020] [Accepted: 03/24/2020] [Indexed: 11/17/2022]
Abstract
Actinoplanes sp. SE50/110 (ATCC 31044) is the wild type of industrial producer strains of acarbose. Acarbose has been used since the early 1990s as an inhibitor of intestinal human α-glucosidases in the medical treatment of type II diabetes mellitus. The small secreted protein Cgt, which consists of a single carbohydrate-binding module (CBM) 20-domain, was found to be highly expressed in Actinoplanes sp. SE50/110 in previous studies, but neither its function nor a possible role in the acarbose formation was explored, yet. Here, we demonstrated the starch-binding function of the Cgt protein in a binding assay. Transcription analysis showed that the cgt gene was strongly repressed in the presence of glucose or lactose. Due to this and its high abundance in the extracellular proteome of Actinoplanes, a functional role within the sugar metabolism or in the environmental stress protection was assumed. However, the gene deletion mutant ∆cgt, constructed by CRISPR/Cas9 technology, displayed no apparent phenotype in screening experiments testing for pH and osmolality stress, limited carbon source starch, and the excess of seven different sugars in liquid culture and further 97 carbon sources in the Omnilog Phenotypic Microarray System of Biolog. Therefore, a protective function as a surface protein or a function within the retainment and the utilization of carbon sources could not be experimentally validated. Remarkably, enhanced production of acarbose was determined yielding into 8–16% higher product titers when grown in maltose-containing medium.
Collapse
|