1
|
Panera-Martínez S, Rodríguez-Melcón C, Riesco-Peláez F, Rodríguez-Campos D, Alonso-Calleja C, Capita R. Characterization and long-read sequencing of biofilms formed by the microbiota present on inert surfaces in poultry slaughterhouses. Int J Food Microbiol 2025; 426:110915. [PMID: 39342701 DOI: 10.1016/j.ijfoodmicro.2024.110915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024]
Abstract
Cross-contamination from inert slaughterhouse surfaces is among the main sources of contamination of poultry. The objective of the research reported here was to characterize the biofilms formed by the microbiota present on various surfaces in two poultry slaughterhouses in north-western Spain. Forty-four samples (22 from each slaughterhouse) were taken by swab rubbing at different points along the processing line (from stunning to cutting). The microbiota on all surfaces was able to form biofilms, which were studied by scanning confocal laser microscopy. The total biovolume in the observation field of 16,078.24 μm2 ranged from 22,106.8 ± 5544.3 μm3 to 414,229.6 ± 1621.0 μm3. Average values were higher in abattoir A than in abattoir B, with significant differences (P < 0.05) between surfaces. The percentage of biovolume of Gram-positive bacteria ranged between 0.02 % and 5.38 %. The highest percentages of Gram-positive bacteria were detected towards the beginning of the processing line. The microbiota of the biofilms was identified using long-read sequencing techniques (Oxford Nanopore). The predominant genera (found in >50.0 % of the biofilms) were Pseudomonas, Citrobacter, Klebsiella, Serratia, Escherichia, Enterobacter, Stenotrophomonas, Salmonella, Shewanella, Acinetobacter and Aeromonas. In addition, some pathogenic bacteria were detected, including Salmonella (31 surfaces), Yersinia enterocolitica (12), Escherichia coli O157:H7 (6), Campylobacter spp. (4) and Listeria monocytogenes (3). This research work has permitted identification of the most contaminated surfaces in poultry abattoirs and can serve as a starting point for the design of more effective cleaning and disinfection protocols.
Collapse
Affiliation(s)
- Sarah Panera-Martínez
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems and Automation, School of Industrial, Computer and Aerospace Engineering, University of León, E-24071 León, Spain
| | | | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; Institute of Food Science and Technology, University of León, E-24071 León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071 León, Spain; Institute of Food Science and Technology, University of León, E-24071 León, Spain.
| |
Collapse
|
2
|
Nastulyavichus A, Tolordava E, Kudryashov S, Khmelnitskii R, Ionin A. Laser-Induced Transferred Antibacterial Nanoparticles for Mixed-Species Bacteria Biofilm Inactivation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4309. [PMID: 37374493 DOI: 10.3390/ma16124309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
In the present study, copper and silver nanoparticles with a concentration of 20 µg/cm2 were synthesized using the method of laser-induced forward transfer (LIFT). The antibacterial activity of the nanoparticles was tested against bacterial biofilms that are common in nature, formed by several types of microorganisms (mixed-species bacteria biofilms): Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The Cu nanoparticles showed complete inhibition of the bacteria biofilms used. In the course of the work, a high level of antibacterial activity was demonstrated by nanoparticles. This activity manifested in the complete suppression of the daily biofilm, with the number of bacteria decreasing by 5-8 orders of magnitude from the initial concentration. To confirm antibacterial activity, and determine reductions in cell viability, the Live/Dead Bacterial Viability Kit was used. FTIR spectroscopy revealed that after Cu NP treatment, there was in a slight shift in the region, which corresponded to fatty acids, indicating a decrease in the relative motional freedom of molecules.
Collapse
Affiliation(s)
- Alena Nastulyavichus
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Eteri Tolordava
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey Kudryashov
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia
- School of Natural Sciences and Mathematics, Ural Federal University, 620000 Ekaterinburg, Russia
| | - Roman Khmelnitskii
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Ionin
- P. N. Lebedev Physics Institute of Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
3
|
Chen Q, Zhang X, Wang Q, Yang J, Zhong Q. The mixed biofilm formed by Listeria monocytogenes and other bacteria: Formation, interaction and control strategies. Crit Rev Food Sci Nutr 2023; 64:8570-8586. [PMID: 37070220 DOI: 10.1080/10408398.2023.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Listeria monocytogenes is an important foodborne pathogen. It can adhere to food or food contact surface for a long time and form biofilm, which will lead to equipment damage, food deterioration, and even human diseases. As the main form of bacteria to survive, the mixed biofilms often exhibit higher resistance to disinfectants and antibiotics, including the mixed biofilms formed by L. monocytogenes and other bacteria. However, the structure and interspecific interaction of the mixed biofilms are very complex. It remains to be explored what role the mixed biofilm could play in the food industry. In this review, we summarized the formation and influence factors of the mixed biofilm developed by L. monocytogenes and other bacteria, as well as the interspecific interactions and the novel control measures in recent years. Moreover, the future control strategies are prospected, in order to provide theoretical basis and reference for the research of the mixed biofilms and the targeted control measures.
Collapse
Affiliation(s)
- Qingying Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xingguo Zhang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingqing Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jingxian Yang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Beyond the Risk of Biofilms: An Up-and-Coming Battleground of Bacterial Life and Potential Antibiofilm Agents. Life (Basel) 2023; 13:life13020503. [PMID: 36836860 PMCID: PMC9959329 DOI: 10.3390/life13020503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Microbial pathogens and their virulence factors like biofilms are one of the major factors which influence the disease process and its outcomes. Biofilms are a complex microbial network that is produced by bacteria on any devices and/or biotic surfaces to escape harsh environmental conditions and antimicrobial effects. Due to the natural protective nature of biofilms and the associated multidrug resistance issues, researchers evaluated several natural anti-biofilm agents, including bacteriophages and their derivatives, honey, plant extracts, and surfactants for better destruction of biofilm and planktonic cells. This review discusses some of these natural agents that are being put into practice to prevent biofilm formation. In addition, we highlight bacterial biofilm formation and the mechanism of resistance to antibiotics.
Collapse
|
5
|
Alonso VPP, Gonçalves MPMBB, de Brito FAE, Barboza GR, Rocha LDO, Silva NCC. Dry surface biofilms in the food processing industry: An overview on surface characteristics, adhesion and biofilm formation, detection of biofilms, and dry sanitization methods. Compr Rev Food Sci Food Saf 2023; 22:688-713. [PMID: 36464983 DOI: 10.1111/1541-4337.13089] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 12/09/2022]
Abstract
Bacterial biofilm formation in low moisture food processing (LMF) plants is related to matters of food safety, production efficiency, economic loss, and reduced consumer trust. Dry surfaces may appear dry to the naked eye, however, it is common to find a coverage of thin liquid films and microdroplets, known as microscopic surface wetness (MSW). The MSW may favor dry surface biofilm (DSB) formation. DSB formation is similar in other industries, it occurs through the processes of adhesion, production of extracellular polymeric substances, development of microcolonies and maturation, it is mediated by a quorum sensing (QS) system and is followed by dispersal, leading to disaggregation. Species that survive on dry surfaces develop tolerance to different stresses. DSB are recalcitrant and contribute to higher resistance to sanitation, becoming potential sources of contamination, related to the spoilage of processed products and foodborne disease outbreaks. In LMF industries, sanitization is performed using physical methods without the presence of water. Although alternative dry sanitizing methods can be efficiently used, additional studies are still required to develop and assess the effect of emerging technologies, and to propose possible combinations with traditional methods to enhance their effects on the sanitization process. Overall, more information about the different technologies can help to find the most appropriate method/s, contributing to the development of new sanitization protocols. Thus, this review aimed to identify the main characteristics and challenges of biofilm management in low moisture food industries, and summarizes the mechanisms of action of different dry sanitizing methods (alcohol, hot air, UV-C light, pulsed light, gaseous ozone, and cold plasma) and their effects on microbial metabolism.
Collapse
Affiliation(s)
- Vanessa Pereira Perez Alonso
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Maria Paula M B B Gonçalves
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | | - Giovana Rueda Barboza
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Liliana de Oliveira Rocha
- Department of Food Science and Nutrition, School of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | | |
Collapse
|
6
|
Kim S, Park S. Chlorine dioxide gas mediated inactivation of the biofilm cells of. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:4863-4869. [PMID: 36276550 PMCID: PMC9579236 DOI: 10.1007/s13197-022-05574-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/13/2022] [Accepted: 08/16/2022] [Indexed: 06/16/2023]
Abstract
This study evaluated the chlorine dioxide (ClO2) gas mediated inactivation of the biofilm cells of foodborne pathogens on food contact surfaces. Biofilm cells of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes were developed on stainless steel (SS) and high density polyethylene (HDPE) coupon surfaces, and 5-day-old biofilms were treated with ClO2 gas at 60 and 90% relative humidity (RH) for up to 20 min. With an increase in gas concentration and treatment time, significant differences (p < 0.05) were observed between reduction levels under different RH conditions. Treatment with 50 ppmv of ClO2 gas (60% RH) for 20 min resulted in log reductions from 2.08 to 4.62 and 2.08 to 4.41 of the biofilm cells of three pathogens on SS and HDPE surfaces, respectively. The levels of biofilm cells of E. coli O157:H7, S. Typhimurium, and L. monocytogenes on SS and HDPE surfaces were reduced to below the detection limit (0.48 log CFU/cm2) within 15, 20, and 20 min, respectively, when exposure to 50 ppmv of ClO2 gas at 90% RH.
Collapse
Affiliation(s)
- Seyeon Kim
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| | - Sanghyun Park
- Department of Food Science and Technology, Kongju National University, Yesan, Chungnam 32439 Republic of Korea
| |
Collapse
|
7
|
Atiencia-Carrera MB, Cabezas-Mera FS, Vizuete K, Debut A, Tejera E, Machado A. Evaluation of the biofilm life cycle between Candida albicans and Candida tropicalis. Front Cell Infect Microbiol 2022; 12:953168. [PMID: 36061861 PMCID: PMC9433541 DOI: 10.3389/fcimb.2022.953168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Candida tropicalis is an emergent pathogen with a high rate of mortality associated with its biofilm formation. Biofilm formation has important repercussions on the public health system. However, little is still known about its biofilm life cycle. The present study analyzed the biofilm life cycle of Candida albicans and C. tropicalis during various timepoints (24, 48, 72, and 96 h) through biomass assays, colony-forming unit (CFU) counting, and epifluorescence and scanning electron microscopies. Our results showed a significant difference between C. albicans and C. tropicalis biofilms in each biomass and viability assay. All-time samples in the biomass and viability assays confirmed statistical differences between the Candida species through pairwise Wilcoxon tests (p < 0.05). C. albicans demonstrated a lower biomass growth but reached nearly the same level of C. tropicalis biomass at 96 h, while the CFU counting assays exhibited a superior number of viable cells within the C. tropicalis biofilm. Statistical differences were also found between C. albicans and C. tropicalis biofilms from 48- and 72-h microscopies, demonstrating C. tropicalis with a higher number of total cells within biofilms and C. albicans cells with a superior cell area and higher matrix production. Therefore, the present study proved the higher biofilm production of C. tropicalis.
Collapse
Affiliation(s)
- María Belén Atiencia-Carrera
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
| | - Karla Vizuete
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Alexis Debut
- Center of Nanoscience and Nanotechnology, Universidad de las Fuerzas Armadas (ESPE), Sangolquí, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), Quito, Ecuador
- *Correspondence: António Machado, ; Eduardo Tejera,
| | - António Machado
- Universidad San Francisco de Quito (USFQ), Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Quito, Ecuador
- *Correspondence: António Machado, ; Eduardo Tejera,
| |
Collapse
|
8
|
Wilson A, Fegan N, Turner MS. Co-culture with Acinetobacter johnsonii enhances benzalkonium chloride resistance in Salmonella enterica via triggering lipid A modifications. Int J Food Microbiol 2022; 381:109905. [DOI: 10.1016/j.ijfoodmicro.2022.109905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 10/31/2022]
|
9
|
Zhai SY, Kong MG, Xia YM. Cold Atmospheric Plasma Ameliorates Skin Diseases Involving Reactive Oxygen/Nitrogen Species-Mediated Functions. Front Immunol 2022; 13:868386. [PMID: 35720416 PMCID: PMC9204314 DOI: 10.3389/fimmu.2022.868386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Skin diseases are mainly divided into infectious diseases, non-infectious inflammatory diseases, cancers, and wounds. The pathogenesis might include microbial infections, autoimmune responses, aberrant cellular proliferation or differentiation, and the overproduction of inflammatory factors. The traditional therapies for skin diseases, such as oral or topical drugs, have still been unsatisfactory, partly due to systematic side effects and reappearance. Cold atmospheric plasma (CAP), as an innovative and non-invasive therapeutic approach, has demonstrated its safe and effective functions in dermatology. With its generation of reactive oxygen species and reactive nitrogen species, CAP exhibits significant efficacies in inhibiting bacterial, viral, and fungal infections, facilitating wound healing, restraining the proliferation of cancers, and ameliorating psoriatic or vitiligous lesions. This review summarizes recent advances in CAP therapies for various skin diseases and implicates future strategies for increasing effectiveness or broadening clinical indications.
Collapse
Affiliation(s)
- Si-yue Zhai
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
| | - Michael G. Kong
- Center of Plasma Biomedicine, State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an, China
- School of Electrical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Yu-min Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
10
|
Govaert M, Smet C, Acquah C, Walsh JL, Van Impe JFM. Behavior of the Surviving Population of Listeria monocytogenes and Salmonella Typhimurium Biofilms Following a Direct Helium-Based Cold Atmospheric Plasma Treatment. Front Microbiol 2022; 13:831434. [PMID: 35401458 PMCID: PMC8988229 DOI: 10.3389/fmicb.2022.831434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/07/2022] [Indexed: 12/04/2022] Open
Abstract
Although the Cold Atmospheric Plasma (CAP) technology proved promising for inactivation of biofilms present on abiotic food contact surfaces, more research is required to examine the behavior of the CAP surviving biofilm-associated cells. It was therefore examined whether (i) CAP treated (Listeria monocytogenes and Salmonella Typhimurium) biofilm-associated cells were able to further colonize the already established biofilms during a subsequent incubation period and (ii) isolates of the surviving population became less susceptible toward CAP when the number of biofilm development—CAP treatment cycles increased. For this purpose, a direct treatment was applied using a helium-based Dielectric Barrier Discharge electrode configuration. Results indicated that the surviving population was able to further colonize the already established biofilms, since the cell density of the CAP treated + incubated biofilms equaled the initial density of the untreated biofilms. For the L. monocytogenes biofilms, also the total biomass proved to further increase, which might result in an even further increased resistance. The susceptibility of the biofilm-associated cells proved to be influenced by the specific number of CAP treatment cycles, which might potentially result in an overestimation of the CAP treatment efficacy and, consequently, an increased risk of food contamination.
Collapse
Affiliation(s)
- Marlies Govaert
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cindy Smet
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Cyril Acquah
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - James L. Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | - Jan F. M. Van Impe
- CPMF2 - Flemish Cluster Predictive Microbiology in Foods, Ghent, Belgium
- OPTEC - Optimization in Engineering Center-of-Excellence, KU Leuven, Ghent, Belgium
- BioTeC+ - Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
- *Correspondence: Jan F. M. Van Impe,
| |
Collapse
|
11
|
Singh A, Padmesh S, Dwivedi M, Kostova I. How Good are Bacteriophages as an Alternative Therapy to Mitigate Biofilms of Nosocomial Infections. Infect Drug Resist 2022; 15:503-532. [PMID: 35210792 PMCID: PMC8860455 DOI: 10.2147/idr.s348700] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Bacteria survive on any surface through the generation of biofilms that provide a protective environment to grow as well as making them drug resistant. Extracellular polymeric matrix is a crucial component in biofilm formation. The presence of biofilms consisting of common opportunistic and nosocomial, drug-resistant pathogens has been reported on medical devices like catheters and prosthetics, leading to many complications. Several approaches are under investigation to combat drug-resistant bacteria. Deployment of bacteriophages is one of the promising approaches to invade biofilm that may expose bacteria to the conditions adverse for their growth. Penetration into these biofilms and their destruction by bacteriophages is brought about due to their small size and ability of their progeny to diffuse through the bacterial cell wall. The other mechanisms employed by phages to infect biofilms may include their relocation through water channels to embedded host cells, replication at local sites followed by infection to the neighboring cells and production of depolymerizing enzymes to decompose viscous biofilm matrix, etc. Various research groups are investigating intricacies involved in phage therapy to mitigate the bacterial infection and biofilm formation. Thus, bacteriophages represent a good control over different biofilms and further understanding of phage-biofilm interaction at molecular level may overcome the clinical challenges in phage therapy. The present review summarizes the comprehensive details on dynamic interaction of phages with bacterial biofilms and the role of phage-derived enzymes - endolysin and depolymerases in extenuating biofilms of clinical and medical concern. The methodology employed was an extensive literature search, using several keywords in important scientific databases, such as Scopus, Web of Science, PubMed, ScienceDirect, etc. The keywords were also used with Boolean operator "And". More than 250 relevant and recent articles were selected and reviewed to discuss the evidence-based data on the application of phage therapy with recent updates, and related potential challenges.
Collapse
Affiliation(s)
- Aditi Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Sudhakar Padmesh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, 226028, India
| | - Irena Kostova
- Department of Chemistry, Faculty of Pharmacy, Medical University, Sofia, 1000, Bulgaria
| |
Collapse
|
12
|
Pablos C, Govaert M, Angarano V, Smet C, Marugán J, Van Impe JFM. Photocatalytic inactivation of dual- and mono-species biofilms by immobilized TiO 2. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 221:112253. [PMID: 34271411 DOI: 10.1016/j.jphotobiol.2021.112253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/25/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Biofilms formed by different bacterial species are likely to play key roles in photocatalytic resistance. This study aims to evaluate the efficacy of a photocatalytic immobilized nanotube system (TiO2-NT) (IS) and suspended nanoparticles (TiO2-NP) (SS) against mono- and dual-species biofilms developed by Gram-negative and Gram-positive strains. Two main factors were corroborated to significantly affect the biofilm resistance during photocatalytic inactivation, i.e., the biofilm-growth conditions and biofilm-forming surfaces. Gram-positive bacteria showed great photosensitivity when forming dual-species biofilms in comparison with the Gram-positive bacteria in single communities. When grown onto TiO2-NT (IS) surfaces for immobilized photocatalytic systems, mono- and dual-species biofilms did not exhibit differences in photocatalytic inactivation according to kinetic constant values (p > 0.05) but led to a reduction of ca. 3-4 log10. However, TiO2-NT (IS) surfaces did affect biofilm colonization as the growth of mono-species biofilms of Gram-negative and Gram-positive bacteria is significantly (p ≤ 0.05) favored compared to co-culturing; although, the photocatalytic inactivation rate did not show initial bacterial concentration dependence. The biofilm growth surface (which depends on the photocatalytic configuration) also favored resistance of mono-species biofilms of Gram-positive bacteria compared to that of Gram-negative in immobilized photocatalytic systems, but opposite behavior was confirmed with suspended TiO2 (p ≤ 0.05). Successful efficacy of immobilized TiO2 for inactivation of mono- and dual-species biofilms was accomplished, making it feasible to transfer this technology into real scenarios in water treatment and food processing.
Collapse
Affiliation(s)
- C Pablos
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Madrid, Spain.
| | - M Govaert
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - V Angarano
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - C Smet
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium
| | - J Marugán
- Department of Chemical and Environmental Technology, ESCET, Universidad Rey Juan Carlos, c/Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - J F M Van Impe
- Department of Chemical Engineering, BioTeC+ Chemical and Biochemical Process Technology and Control, KU Leuven, Gebroeders De Smetstraat 1, B-9000 Gent, Belgium.
| |
Collapse
|
13
|
Handorf O, Pauker VI, Weihe T, Schäfer J, Freund E, Schnabel U, Bekeschus S, Riedel K, Ehlbeck J. Plasma-Treated Water Affects Listeria monocytogenes Vitality and Biofilm Structure. Front Microbiol 2021; 12:652481. [PMID: 33995311 PMCID: PMC8113633 DOI: 10.3389/fmicb.2021.652481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Plasma-generated compounds (PGCs) such as plasma-processed air (PPA) or plasma-treated water (PTW) offer an increasingly important alternative for the control of microorganisms in hard-to-reach areas found in several industrial applications including the food industry. To this end, we studied the antimicrobial capacity of PTW on the vitality and biofilm formation of Listeria monocytogenes, a common foodborne pathogen. Results: Using a microwave plasma (MidiPLexc), 10 ml of deionized water was treated for 100, 300, and 900 s (pre-treatment time), after which the bacterial biofilm was exposed to the PTW for 1, 3, and 5 min (post-treatment time) for each pre-treatment time, separately. Colony-forming units (CFU) were significantly reduced by 4.7 log10 ± 0.29 log10, as well as the metabolic activity decreased by 47.9 ± 9.47% and the cell vitality by 69.5 ± 2.1%, compared to the control biofilms. LIVE/DEAD staining and fluorescence microscopy showed a positive correlation between treatment and incubation times, as well as reduction in vitality. Atomic force microscopy (AFM) indicated changes in the structure quality of the bacterial biofilm. Conclusion: These results indicate a promising antimicrobial impact of plasma-treated water on Listeria monocytogenes, which may lead to more targeted applications of plasma decontamination in the food industry in the future.
Collapse
Affiliation(s)
- Oliver Handorf
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | | | - Thomas Weihe
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Jan Schäfer
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Eric Freund
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Uta Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University, Dublin, Ireland
| | - Sander Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jörg Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|
14
|
Arshad R, Tabish TA, Kiani MH, Ibrahim IM, Shahnaz G, Rahdar A, Kang M, Pandey S. A Hyaluronic Acid Functionalized Self-Nano-Emulsifying Drug Delivery System (SNEDDS) for Enhancement in Ciprofloxacin Targeted Delivery against Intracellular Infection. NANOMATERIALS 2021; 11:nano11051086. [PMID: 33922241 PMCID: PMC8146397 DOI: 10.3390/nano11051086] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022]
Abstract
Ciprofloxacin (CIP), a potent anti-bacterial agent of the fluroquinolone family, shows poor solubility and permeability, thus leading to the development of intracellular pathogens induced multi-drug resistance and biofilms formation. To synergistically improve the biopharmaceutical parameters of CIP, a hyaluronic acid (FDA approved biocompatible polymer) functionalized self-nano emulsifying drug delivery system (HA-CIP-SNEDDS) was designed in the present study. SNEDDS formulations were tested via solubility, droplet size, zeta potential, a polydispersity index, thermodynamic stability, surface morphology, solid-state characterization, drug loading/release, cellular uptake, and biocompatibility. The final (HA-CIP-SNEDDS) formulation exhibited a mean droplet size of 50 nm with the 0.3 poly dispersity index and negative zeta potential (-11.4 mV). HA-based SNEDDS containing CIP showed an improved ability to permeate goat intestinal mucus. After 4 h, CIP-SNEDDS showed a 2-fold and HA-CIP-SNEDDS showed a 4-fold permeation enhancement as compared to the free CIP. Moreover, 80% drug release of HA-CIP-SNEDDS was demonstrated to be superior and sustained for 72 h in comparison to free CIP. However, anti-biofilm activity of HA-CIP-SNEDDS against Salmonella typhi was higher than CIP-SNEDDS and free CIP. HA-CIP-SNEDDS exhibited increased biocompatibility and improved oral pharmacokinetics as compared to free CIP. Taken together, HA-CIP-SNEDDS formulation seems to be a promising agent against Salmonella typhi with a strong targeting potential.
Collapse
Affiliation(s)
- Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Tanveer A. Tabish
- UCL Cancer Institute, University College London, London WC1E6DD, UK;
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
| | - Ibrahim M. Ibrahim
- Department of Pharmacology, College of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gul Shahnaz
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan; (R.A.); (M.H.K.)
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-98615, Iran
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Gyeongbuk, Korea
- Correspondence: (G.S.); (A.R.); (M.K.); or (S.P.)
| |
Collapse
|
15
|
Arshad R, Pal K, Sabir F, Rahdar A, Bilal M, Shahnaz G, Kyzas GZ. A review of the nanomaterials use for the diagnosis and therapy of salmonella typhi. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Chen X, Hu Y, Tian S, Han B. Understanding the Interactions between Staphylococcus aureus and the Raw-Meat-Processing Environment Isolate Klebsiella oxytoca in Dual-Species Biofilms via Discovering an Altered Metabolic Profile. Microorganisms 2021; 9:microorganisms9040672. [PMID: 33805148 PMCID: PMC8064066 DOI: 10.3390/microorganisms9040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 11/24/2022] Open
Abstract
In a raw-meat-processing environment, members of the Enterobacteriaceae family can coexist with Staphylococcus aureus to form dual-species biofilms, leading to a higher risk of food contamination. However, very little is known about the effect of inter-species interactions on dual-species biofilm formation. The aim of this study was to investigate the interactions between S. aureus and raw-meat-processing environment isolates of Klebsiella oxytoca in dual-species biofilms, by employing an untargeted metabolomics tool. Crystal violet staining assay showed that the biomass of the dual-species biofilm significantly increased and reached its maximum after incubation for 21 h, compared with that of single species grown alone. The number of K. oxytoca in the dual-species biofilm was significantly higher than that of S. aureus. Field emission scanning electron microscopy (FESEM) revealed that both species were evenly distributed, and were tightly wrapped by extracellular polymeric substances in the dual-species biofilms. Ultra-high-pressure liquid chromatography equipped with a quadrupole-time-of-flight mass spectrometer (UHPLC-Q-TOF MS) analysis exhibited a total of 8184 positive ions, and 6294 negative ions were obtained from all test samples. Multivariate data analysis further described altered metabolic profiling between mono- and dual-species biofilms. Further, 18 and 21 different metabolites in the dual-species biofilm were screened as biomarkers by comparing the mono-species biofilms of S. aureus and K. oxytoca, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that were exclusively upregulated in the dual-species biofilm included ABC transporters, amino acid metabolism, and the two-component signal transduction system. Our results contribute to a better understanding of the interactive behavior of inter-species biofilm communities, by discovering altered metabolic profiling.
Collapse
|
17
|
Kim U, Kim JH, Oh SW. Review of multi-species biofilm formation from foodborne pathogens: multi-species biofilms and removal methodology. Crit Rev Food Sci Nutr 2021; 62:5783-5793. [PMID: 33663287 DOI: 10.1080/10408398.2021.1892585] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multi-species biofilms are ubiquitous worldwide and are a concern in the food industry. Multi-species biofilms have a higher resistance to antimicrobial therapies than mono-species biofilms. In addition, multi-species biofilms can cause severe foodborne diseases. To remove multi-species biofilms, controlling the formation process of extracellular polymeric substances (EPS) and quorum sensing (QS) effects is essential. EPS disruption, inhibition of QS, and disinfection have been utilized to remove multi-species biofilms. This review presents information on the formation and novel removal methods for multi-species biofilms.
Collapse
Affiliation(s)
- Unji Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Jin-Hee Kim
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| | - Se-Wook Oh
- Department of Food and Nutrition, Kookmin University, Seoul, Korea
| |
Collapse
|
18
|
El Kadri H, Costello KM, Thomas P, Wantock T, Sandison G, Harle T, Fabris AL, Gutierrez-Merino J, Velliou EG. The antimicrobial efficacy of remote cold atmospheric plasma effluent against single and mixed bacterial biofilms of varying age. Food Res Int 2021; 141:110126. [PMID: 33641993 DOI: 10.1016/j.foodres.2021.110126] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 12/24/2022]
Abstract
Cold atmospheric plasma (CAP) is a minimal food processing technology of increasing interest in the food industry, as it is mild in nature compared to traditional methods (e.g. pasteurisation) and thus can maintain the food's desirable qualities. However, due to this mild nature, the potential exists for post-treatment microbial survival and/or stress adaptation. Furthermore, biofilm inactivation by CAP is underexplored and mostly studied on specific foods or on plastic/polymer surfaces. Co-culture effects, biofilm age, and innate biofilm-associated resistance could all impact CAP efficacy, while studies on real foods are limited to the food product investigated without accounting for structural complexity. The effect of a Remote and Enclosed CAP device (Fourth State Medicine Ltd) was investigated on Escherichia coli and Listeria innocua grown as planktonic cells and as single or mixed bacterial biofilms of variable age, on a biphasic viscoelastic food model of controlled rheological and structural complexity. Post-CAP viability was assessed by plate counts, cell sublethal injury was quantified using flow cytometry, and biofilms were characterised and assessed using total protein content and microscopy techniques. A greater impact of CAP on planktonic cells was observed at higher air flow rates, where the ReCAP device operates in a mode more favourable to reactive oxygen species than reactive nitrogen species. Although planktonic E. coli was more susceptible to CAP than planktonic L. innocua, the opposite was observed in biofilm form. The efficacy of CAP was reduced with increasing biofilm age. Furthermore, E. coli produced much higher protein content in both single and mixed biofilms than L. innocua. Consequently, greater survival of L. innocua in mixed biofilms was attributed to a protective effect from E. coli. These results show that biofilm susceptibility to CAP is age and bacteria dependent, and that in mixed biofilms bacteria may become less susceptible to CAP. These findings are of significance to the food industry for the development of effective food decontamination methods using CAP.
Collapse
Affiliation(s)
- Hani El Kadri
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Katherine M Costello
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK
| | - Phillip Thomas
- Surrey Space Centre, University of Surrey, Guildford GU2 7XH, UK
| | - Thomas Wantock
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Gavin Sandison
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | - Thomas Harle
- Fourth State Medicine Ltd, Longfield, Fernhurst, Haslemere GU27 3HA, UK
| | | | | | - Eirini G Velliou
- Bioprocess and Biochemical Engineering Group (BioProChem), Department of Chemical and Process Engineering, University of Surrey, Guildford GU2 7XH, UK.
| |
Collapse
|
19
|
Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics (Basel) 2021; 10:175. [PMID: 33578658 PMCID: PMC7916357 DOI: 10.3390/antibiotics10020175] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to specific antibiotic resistance, the formation of bacterial biofilm causes another level of complications in attempts to eradicate pathogenic or harmful bacteria, including difficult penetration of drugs through biofilm structures to bacterial cells, impairment of immunological response of the host, and accumulation of various bioactive compounds (enzymes and others) affecting host physiology and changing local pH values, which further influence various biological functions. In this review article, we provide an overview on the formation of bacterial biofilm and its properties, and then we focus on the possible use of phage-derived depolymerases to combat bacterial cells included in this complex structure. On the basis of the literature review, we conclude that, although these bacteriophage-encoded enzymes may be effective in destroying specific compounds involved in the formation of biofilm, they are rarely sufficient to eradicate all bacterial cells. Nevertheless, a combined therapy, employing depolymerases together with antibiotics and/or other antibacterial agents or factors, may provide an effective approach to treat infections caused by bacteria able to form biofilms.
Collapse
Affiliation(s)
- Gracja Topka-Bielecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| |
Collapse
|
20
|
Fagerlund A, Langsrud S, Møretrø T. Microbial diversity and ecology of biofilms in food industry environments associated with Listeria monocytogenes persistence. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
All Treatment Parameters Affect Environmental Surface Sanitation Efficacy, but Their Relative Importance Depends on the Microbial Target. Appl Environ Microbiol 2020; 87:AEM.01748-20. [PMID: 33097504 PMCID: PMC7755260 DOI: 10.1128/aem.01748-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 10/13/2020] [Indexed: 12/19/2022] Open
Abstract
Environmental sanitation in food manufacturing plants promotes food safety and product microbial quality. However, the development of experimental models remains a challenge due to the complex nature of commercial cleaning processes, which include spraying water and sanitizer on equipment and structural surfaces within manufacturing space. Although simple in execution, the physical driving forces are difficult to simulate in a controlled laboratory environment. Here, we present a bench-scale bioreactor system which mimics the flow conditions in environmental sanitation programs. We applied computational fluid dynamic (CFD) simulations to obtain fluid flow parameters that better approximate and predict industrial outcomes. According to the CFD model, the local wall shear stress achieved on the target surface ranged from 0.015 to 5.00 Pa. Sanitation efficacy on six types of environmental surface materials (hydrophobicity, 57.59 to 88.61°; roughness, 2.2 to 11.9 μm) against two different microbial targets, the bacterial pathogen Listeria monocytogenes and Exophiala species spoilage fungi, were evaluated using the bench-scale bioreactor system. The relative reduction ranged from 0.0 to 0.82 for Exophiala spp., which corresponded to a 0.0 to 2.21 log CFU/coupon reduction, and the relative reduction ranged from 0.0 to 0.93 in L. monocytogenes which corresponded to a 0.0 to 6.19 log CFU/coupon reduction. Although most treatment parameters were considered statistically significant against either L. monocytogenes or Exophiala spp., contact time was ranked as the most important predictor for L. monocytogenes reduction. Shear stress contributed the most to Exophiala spp. removal on stainless steel and Buna-N rubber, while contact time was the most important factor on HDPE (high-density polyethylene), cement, and epoxy.IMPORTANCE Commercial food manufacturers commonly employ a single sanitation program that addresses both bacterial pathogen and fungal spoilage microbiota, despite the fact that the two microbial targets respond differently to various environmental sanitation conditions. Comparison of outcome-based clusters of treatment combinations may facilitate the development of compensatory sanitation regimes where longer contact time or greater force are applied so that lower sanitizer concentrations can be used. Determination of microbiological outcomes related to sanitation program efficacy against a panel of treatment conditions allows food processors to balance tradeoffs between quality and safety with cost and waste stream management, as appropriate for their facility.
Collapse
|
22
|
Rodríguez-Melcón C, Alonso-Hernando A, Riesco-Peláez F, García-Fernández C, Alonso-Calleja C, Capita R. Biovolume and spatial distribution of foodborne Gram-negative and Gram-positive pathogenic bacteria in mono- and dual-species biofilms. Food Microbiol 2020; 94:103616. [PMID: 33279059 DOI: 10.1016/j.fm.2020.103616] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/23/2020] [Accepted: 07/31/2020] [Indexed: 11/29/2022]
Abstract
The objective of this study was to characterize the biofilms formed by Salmonella enterica serotype Agona, Listeria monocytogenes, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE) after 12, 48, 72, 120 and 240 h of incubation at 10 °C. Biofilms containing a single species, together with dual-species biofilms in which S. enterica and a Gram-positive bacterium existed in combination, were formed on polystyrene and evaluated by using confocal laser scanning microscopy (CLSM). All strains were able to form biofilm. The greatest biovolume in the observation field of 14,161 μm2 was observed for mono-species biofilms after 72 h, where biovolumes of 94,409.0 μm3 ± 2131.0 μm3 (S. enterica), 58,418.3 μm3 ± 5944.9 μm3 (L. monocytogenes), 68,020.8 μm3 ± 5812.3 μm3 (MRSA) and 59,280.0 μm3 ± 4032.9 μm3 (VRE) were obtained. In comparison with single-species biofilms, the biovolume of S. enterica was higher in the presence of MRSA or VRE after 48, 72 and 120 h. In dual-species biofilms, the bacteria showed a double-layer distribution pattern, with S. enterica in the top layer and Gram-positive bacteria in the bottom layer. This spatial disposition should be taken into account when effective strategies to eliminate biofilms are being developed.
Collapse
Affiliation(s)
- Cristina Rodríguez-Melcón
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Alicia Alonso-Hernando
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Facultad de Ciencias de la Salud, Universidad Isabel I, E-09003, Burgos, Spain
| | - Félix Riesco-Peláez
- Department of Electrical Engineering and Systems Engineering and Automatic Control, University of León, E-24071, León, Spain
| | - Camino García-Fernández
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Carlos Alonso-Calleja
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain
| | - Rosa Capita
- Department of Food Hygiene and Technology, Veterinary Faculty, University of León, E-24071, León, Spain; Institute of Food Science and Technology, University of León, E-24071, León, Spain.
| |
Collapse
|
23
|
Rao Y, Shang W, Yang Y, Zhou R, Rao X. Fighting Mixed-Species Microbial Biofilms With Cold Atmospheric Plasma. Front Microbiol 2020; 11:1000. [PMID: 32508796 PMCID: PMC7251026 DOI: 10.3389/fmicb.2020.01000] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/24/2020] [Indexed: 01/05/2023] Open
Abstract
Most biofilms in nature are formed by multiple microbial species, and such mixed-species biofilms represent the actual lifestyles of microbes, including bacteria, fungi, viruses (phages), and/or protozoa. Microorganisms cooperate and compete in mixed-species biofilms. Mixed-species biofilm formation and environmental resistance are major threats to water supply, food industry, and human health. The methods commonly used for microbial eradication, such as antibiotic or disinfectant treatments, are often ineffective for mixed-species biofilm consortia due to their physical matrix barrier and physiological interactions. For the last decade, an increasing number of investigations have been devoted to the usage of cold atmospheric plasma (CAP), which is produced by dielectric barrier discharges or plasma jets to prevent or eliminate microbial biofilms. Here, we summarized the production of CAP, the inactivation of microorganisms upon CAP treatment, and the microbial factors affecting the efficacy of CAP procedure. The applications of CAP as antibiotic alternative strategies for fighting mixed-species biofilms were also addressed.
Collapse
Affiliation(s)
- Yifan Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Weilong Shang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Yi Yang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| | - Renjie Zhou
- Department of Emergency, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xiancai Rao
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing, China
| |
Collapse
|
24
|
Govaert M, Smet C, Graeffe A, L. Walsh J, Van Impe JFM. Inactivation of L. monocytogenes and S. typhimurium Biofilms by Means of an Air-Based Cold Atmospheric Plasma (CAP) System. Foods 2020; 9:foods9020157. [PMID: 32041294 PMCID: PMC7074369 DOI: 10.3390/foods9020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/23/2020] [Accepted: 02/01/2020] [Indexed: 11/29/2022] Open
Abstract
Previous (biofilm) inactivation studies using Cold Atmospheric Plasma (CAP) focused on helium (with or without the addition of oxygen) as feeding gas since this proved to result in a stable and uniform plasma. In industry, the use of helium gas is expensive and unsafe for employees. Ambient air is a possible substitute, provided that similar inactivation efficacies can be obtained. In this research, 1 and 7 day-old (single/dual-species) model biofilms containing L. monocytogenes and/or S. typhimurium cells were treated with an air-based Surface Barrier Discharge (SBD) plasma set-up for treatment times between 0 and 30 min. Afterwards, cell densities were quantified via viable plate counts, and predictive models were applied to determine the inactivation kinetics and the efficacy. Finally, the results were compared to previously obtained results using a helium-based SBD and DBD (Dielectric Barrier Discharge) system. This study has demonstrated that the efficacy of the air-based CAP treatment depended on the biofilm and population type, with log-reductions ranging between 1.5 and 2.5 log10(CFU/cm2). The inactivation efficacy was not significantly influenced by the working gas, although the values were generally higher for the air-based system. Finally, this study has demonstrated that the electrode configuration was more important than the working gas composition, with the DBD electrode being the most efficient.
Collapse
Affiliation(s)
- Marlies Govaert
- CPMF2—Flemish Cluster Predictive Microbiology in Foods—www.cpmf2.be, 9000 Ghent, Belgium; (M.G.); (C.S.)
- OPTEC—Optimization in Engineering Center-of-Excellence, KU Leuven, 9000 Ghent, Belgium
- BioTeC—Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Ghent, Belgium;
| | - Cindy Smet
- CPMF2—Flemish Cluster Predictive Microbiology in Foods—www.cpmf2.be, 9000 Ghent, Belgium; (M.G.); (C.S.)
- OPTEC—Optimization in Engineering Center-of-Excellence, KU Leuven, 9000 Ghent, Belgium
- BioTeC—Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Ghent, Belgium;
| | - Annika Graeffe
- BioTeC—Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Ghent, Belgium;
| | - James L. Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool L69 3BX, UK;
| | - Jan F. M. Van Impe
- CPMF2—Flemish Cluster Predictive Microbiology in Foods—www.cpmf2.be, 9000 Ghent, Belgium; (M.G.); (C.S.)
- OPTEC—Optimization in Engineering Center-of-Excellence, KU Leuven, 9000 Ghent, Belgium
- BioTeC—Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Ghent, Belgium;
- Correspondence: ; Tel.: +32-477-256-172
| |
Collapse
|