1
|
Kop LFM, Koch H, Jetten MSM, Daims H, Lücker S. Metabolic and phylogenetic diversity in the phylum Nitrospinota revealed by comparative genome analyses. ISME COMMUNICATIONS 2024; 4:ycad017. [PMID: 38317822 PMCID: PMC10839748 DOI: 10.1093/ismeco/ycad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024]
Abstract
The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.
Collapse
Affiliation(s)
- Linnea F M Kop
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Hanna Koch
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Konrad-Lorenz-Straße 24, Tulln an der Donau 3430, Austria
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Holger Daims
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, Vienna 1030, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Heyendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| |
Collapse
|
2
|
Jaussi M, Jørgensen BB, Kjeldsen KU, Lomstein BA, Pearce C, Seidenkantz MS, Røy H. Cell-specific rates of sulfate reduction and fermentation in the sub-seafloor biosphere. Front Microbiol 2023; 14:1198664. [PMID: 37555068 PMCID: PMC10405931 DOI: 10.3389/fmicb.2023.1198664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/05/2023] [Indexed: 08/10/2023] Open
Abstract
Microorganisms in subsurface sediments live from recalcitrant organic matter deposited thousands or millions of years ago. Their catabolic activities are low, but the deep biosphere is of global importance due to its volume. The stability of deeply buried sediments provides a natural laboratory where prokaryotic communities that live in steady state with their environments can be studied over long time scales. We tested if a balance is established between the flow of energy, the microbial community size, and the basal power requirement needed to maintain cells in sediments buried meters below the sea floor. We measured rates of carbon oxidation by sulfate reduction and counted the microbial cells throughout ten carefully selected sediment cores with ages from years to millions of years. The rates of carbon oxidation were converted to power (J s-1 i.e., Watt) using the Gibbs free energy of the anaerobic oxidation of complex organic carbon. We separated energy dissipation by fermentation from sulfate reduction. Similarly, we separated the community into sulfate reducers and non-sulfate reducers based on the dsrB gene, so that sulfate reduction could be related to sulfate reducers. We found that the per-cell sulfate reduction rate was stable near 10-2 fmol C cell-1 day-1 right below the zone of bioturbation and did not decrease with increasing depth and sediment age. The corresponding power dissipation rate was 10-17 W sulfate-reducing cell-1. The cell-specific power dissipation of sulfate reducers in old sediments was similar to the slowest growing anaerobic cultures. The energy from mineralization of organic matter that was not dissipated by sulfate reduction was distributed evenly to all cells that did not possess the dsrB gene, i.e., cells operationally defined as fermenting. In contrast to sulfate reducers, the fermenting cells had decreasing catabolism as the sediment aged. A vast difference in power requirement between fermenters and sulfate reducers caused the microbial community in old sediments to consist of a minute fraction of sulfate reducers and a vast majority of fermenters.
Collapse
Affiliation(s)
- Marion Jaussi
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | | | | | - Christof Pearce
- Department of Geoscience, Aarhus University, Aarhus, Denmark
| | | | - Hans Røy
- Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
3
|
de la Garza Varela A, Aguirre-Macedo ML, García-Maldonado JQ. Changes in the Rhizosphere Prokaryotic Community Structure of Halodule wrightii Monospecific Stands Associated to Submarine Groundwater Discharges in a Karstic Costal Area. Microorganisms 2023; 11:494. [PMID: 36838457 PMCID: PMC9963909 DOI: 10.3390/microorganisms11020494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
Belowground seagrass associated microbial communities regulate biogeochemical dynamics in the surrounding sediments and influence seagrass physiology and health. However, little is known about the impact of environmental stressors upon interactions between seagrasses and their prokaryotic community in coastal ecosystems. Submerged groundwater discharges (SGD) at Dzilam de Bravo, Yucatán, Mexico, causes lower temperatures and salinities with higher nutrient loads in seawater, resulting in Halodule wrightii monospecific stands. In this study, the rhizospheric archaeal and bacterial communities were characterized by 16S rRNA Illumina sequencing along with physicochemical determinations of water, porewater and sediment in a 400 m northwise transect from SGD occurring at 300 m away from coastline. Core bacterial community included Deltaproteobacteria, Bacteroidia and Planctomycetia, possibly involved in sulfur metabolism and organic matter degradation while highly versatile Bathyarchaeia was the most abundantly represented class within the archaeal core community. Beta diversity analyses revealed two significantly different clusters as result of the environmental conditions caused by SGD. Sites near to SGD presented sediments with higher redox potentials and sand contents as well as lower organic matter contents and porewater ammonium concentrations compared with the furthest sites. Functional profiling suggested that denitrification, aerobic chemoheterotrophy and environmental adaptation processes could be better represented in these sites, while sulfur metabolism and genetic information processing related profiles could be related to SGD uninfluenced sites. This study showed that the rhizospheric prokaryotic community structure of H. wrightii and their predicted functions are shaped by environmental stressors associated with the SGD. Moreover, insights into the archaeal community composition in seagrasses rhizosphere are presented.
Collapse
Affiliation(s)
| | - M. Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida 97310, Yucatán, Mexico
| | - José Q. García-Maldonado
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida 97310, Yucatán, Mexico
| |
Collapse
|
4
|
Li J, Yao C, Song B, Zhang Z, Brock AL, Trapp S, Zhang J. Enrichment of sulfur-oxidizing bacteria using S-doped NiFe 2O 4 nanosheets as the anode in microbial fuel cell enhances power production and sulfur recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156973. [PMID: 35772559 DOI: 10.1016/j.scitotenv.2022.156973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Microbial fuel cells (MFCs) have great promise for power generation by oxidizing organic wastewater, yet the challenge to realize high efficiency in simultaneous energy production and resource recovery remains. In this study, we designed a novel MFC anode by synthesizing S-doped NiFe2O4 nanosheet arrays on carbon cloth (S10-NiFe2O4@CC) to build a three-dimensional (3D) hierarchically porous structure, with the aim to regulate the microbial community of sulfur-cycling microbes in order to enhance power production and elemental sulfur (S0) recovery. The S10-NiFe2O4@CC anode obtained a faster start-up time of 2 d and the highest power density of 4.5 W/m2 in acetate-fed and mixed bacteria-based MFCs. More importantly, sulfide removal efficiency (98.3 %) (initial concentration of 50 mg/L S2-) could be achieved within 3 d and sulfur (S8) could be produced. Microbial community analysis revealed that the S10-NiFe2O4@CC anode markedly enriched sulfur-oxidizing bacteria (SOB) and promoted enrichment of SOB and sulfate-reducing bacteria (SRB) in the bulk solution as well, leading to the enhancement of power generation and S0 recovery. This study shows how carefully designing and optimizing the composition and structure of the anode can lead to the enrichment of a multifunctional microbiota with excellent potential for sulfide removal and resource recovery.
Collapse
Affiliation(s)
- Jiaxin Li
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chongchao Yao
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Bo Song
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhihao Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Andreas Libonati Brock
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Stefan Trapp
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kongens Lyngby, Denmark
| | - Jing Zhang
- National Engineering Laboratory for VOCs Pollution Control Material & Technology, Research Center for Environmental Material and Pollution Control Technology, University of Chinese Academy of Sciences, Beijing 101408, China; Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
5
|
Chen H, Ji C, Hu H, Hu S, Yue S, Zhao M. Bacterial community response to chronic heavy metal contamination in marine sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119280. [PMID: 35500712 DOI: 10.1016/j.envpol.2022.119280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Marine sediments act as a sink for various heavy metals, which may have profound impact on sedimentary microbiota. However, our knowledge about the collaborative response of bacterial community to chronic heavy metal contamination remains little. In this study, concentrations of seven heavy metals (As, Cd, Cr, Cu, Hg, Pb, and Zn) in sediments collected from the East China Sea were analyzed and Illumina Miseq 16 S rRNA sequencing was applied to characterize the structure of bacterial community. Microbiota inhabiting sediments in the East China Sea polluted with heavy metals showed different community composition from relatively pristine sites. The response of bacterial community to heavy metal stress was further interrogated with weighted correlation network analysis (WGCNA). WGCNA revealed ten bacterial modules exhibiting distinct co-occurrence patterns and among them, five modules were related to heavy metal pollution. Three of them were positively correlated with an increase in at least one heavy metal concentration, hubs (more influential bacterial taxa) of which were previously reported to be involved in the geochemical cycling of heavy metals or possess tolerance to heavy metals, while another two modules showed opposite patterns. Our research suggested that ecological functional transition might have occurred in East China Sea sediments by shifts of community composition with sensitive modules majorly involved in the meaningful global biogeochemical cycling of carbon, sulfur, and nitrogen replaced by more tolerant groups of bacteria due to long-term exposure to low-concentration heavy metals. Hubs may serve as indicators of perturbations of benthic bacterial community caused by heavy metal pollution and support monitoring remediation of polluted sites in marine environments.
Collapse
Affiliation(s)
- Haofeng Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Chenyang Ji
- Zhejiang Provincial Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Hongmei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, 316021, China
| | - Shilei Hu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Siqing Yue
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Meirong Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Flieder M, Buongiorno J, Herbold CW, Hausmann B, Rattei T, Lloyd KG, Loy A, Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. THE ISME JOURNAL 2021; 15:3159-3180. [PMID: 33981000 PMCID: PMC8528874 DOI: 10.1038/s41396-021-00992-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023]
Abstract
Acidobacteriota are widespread and often abundant in marine sediments, yet their metabolic and ecological properties are poorly understood. Here, we examined metabolisms and distributions of Acidobacteriota in marine sediments of Svalbard by functional predictions from metagenome-assembled genomes (MAGs), amplicon sequencing of 16S rRNA and dissimilatory sulfite reductase (dsrB) genes and transcripts, and gene expression analyses of tetrathionate-amended microcosms. Acidobacteriota were the second most abundant dsrB-harboring (averaging 13%) phylum after Desulfobacterota in Svalbard sediments, and represented 4% of dsrB transcripts on average. Meta-analysis of dsrAB datasets also showed Acidobacteriota dsrAB sequences are prominent in marine sediments worldwide, averaging 15% of all sequences analysed, and represent most of the previously unclassified dsrAB in marine sediments. We propose two new Acidobacteriota genera, Candidatus Sulfomarinibacter (class Thermoanaerobaculia, "subdivision 23") and Ca. Polarisedimenticola ("subdivision 22"), with distinct genetic properties that may explain their distributions in biogeochemically distinct sediments. Ca. Sulfomarinibacter encode flexible respiratory routes, with potential for oxygen, nitrous oxide, metal-oxide, tetrathionate, sulfur and sulfite/sulfate respiration, and possibly sulfur disproportionation. Potential nutrients and energy include cellulose, proteins, cyanophycin, hydrogen, and acetate. A Ca. Polarisedimenticola MAG encodes various enzymes to degrade proteins, and to reduce oxygen, nitrate, sulfur/polysulfide and metal-oxides. 16S rRNA gene and transcript profiling of Svalbard sediments showed Ca. Sulfomarinibacter members were relatively abundant and transcriptionally active in sulfidic fjord sediments, while Ca. Polarisedimenticola members were more relatively abundant in metal-rich fjord sediments. Overall, we reveal various physiological features of uncultured marine Acidobacteriota that indicate fundamental roles in seafloor biogeochemical cycling.
Collapse
Affiliation(s)
- Mathias Flieder
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Joy Buongiorno
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Division of Natural Sciences, Maryville College, Maryville, TN, USA
| | - Craig W Herbold
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Karen G Lloyd
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
| | - Alexander Loy
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
| | - Kenneth Wasmund
- Division of Microbial Ecology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
- Austrian Polar Research Institute, Vienna, Austria.
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
7
|
Laufer-Meiser K, Michaud AB, Maisch M, Byrne JM, Kappler A, Patterson MO, Røy H, Jørgensen BB. Potentially bioavailable iron produced through benthic cycling in glaciated Arctic fjords of Svalbard. Nat Commun 2021; 12:1349. [PMID: 33649339 PMCID: PMC7921405 DOI: 10.1038/s41467-021-21558-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The Arctic has the highest warming rates on Earth. Glaciated fjord ecosystems, which are hotspots of carbon cycling and burial, are extremely sensitive to this warming. Glaciers are important for the transport of iron from land to sea and supply this essential nutrient to phytoplankton in high-latitude marine ecosystems. However, up to 95% of the glacially-sourced iron settles to sediments close to the glacial source. Our data show that while 0.6-12% of the total glacially-sourced iron is potentially bioavailable, biogeochemical cycling in Arctic fjord sediments converts the glacially-derived iron into more labile phases, generating up to a 9-fold increase in the amount of potentially bioavailable iron. Arctic fjord sediments are thus an important source of potentially bioavailable iron. However, our data suggests that as glaciers retreat onto land the flux of iron to the sediment-water interface may be reduced. Glacial retreat therefore likely impacts iron cycling in coastal marine ecosystems.
Collapse
Affiliation(s)
- Katja Laufer-Meiser
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark ,grid.15649.3f0000 0000 9056 9663Present Address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Alexander B. Michaud
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark ,grid.296275.d0000 0000 9516 4913Present Address: Bigelow Laboratory for Ocean Sciences, Maine, USA
| | - Markus Maisch
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - James M. Byrne
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany ,grid.5337.20000 0004 1936 7603Present Address: School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, UK
| | - Andreas Kappler
- grid.10392.390000 0001 2190 1447Center for Applied Geosciences, University of Tübingen, Tübingen, Germany ,grid.15649.3f0000 0000 9056 9663Present Address: GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Molly O. Patterson
- grid.264260.40000 0001 2164 4508Department of Geological Sciences and Environmental Studies, Binghamton University, New York, USA
| | - Hans Røy
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Bo Barker Jørgensen
- grid.7048.b0000 0001 1956 2722Center for Geomicrobiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Shi C, Xu Y, Liu M, Chen X, Fan M, Liu J, Chen Y. Enhanced bisphenol S anaerobic degradation using an NZVI-HA-modified anode in bioelectrochemical systems. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124053. [PMID: 33265058 DOI: 10.1016/j.jhazmat.2020.124053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/15/2020] [Accepted: 09/20/2020] [Indexed: 06/12/2023]
Abstract
As a substitute for bisphenol A (BPA), bisphenol S (BPS) has a longer half-life, higher chemical inertness and better skin permeability than BPA, and it also has a strong endocrine disruption effect. Relatively few studies have focused on the main processing technology for BPS biodegradation, and the findings indicate that the biodegradation efficiency of BPS was relatively low. Therefore, this paper used an NZVI-HA composite-modified bio-anode to enhance the anaerobic degradation of BPS in a Bioelectrochemical Systems (BES). The results showed that the degradation efficiency of BPS was improved from 31.1% to 92.2% with the NZVI-HA modification compared with the control group (CC-BES). FTIR and XPS analyzes demonstrated that HA can accelerate the reduction rate of Fe3+ and increase the ratio of Fe2+/Fe3+. In addition, HA can form Fe-O-HA complexes with NZVI to promote electron transfer. An analysis of the NZVI-HA-BES intermediate metabolites revealed that complex modification properties altered the BPS degradation pathway. An analysis of microbial diversity indicated that the bacteria related to the degradation of BPS may be Terrimonas, Lysobacter, and Acidovorax.
Collapse
Affiliation(s)
- Chenyi Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mingqing Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Xiujuan Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mengjie Fan
- College of Material Science and Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Jining Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yingwen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Contribution of archaea and bacteria in sustaining climate change by oxidizing ammonia and sulfur in an Arctic Fjord. Genomics 2020; 113:1272-1276. [PMID: 33161088 DOI: 10.1016/j.ygeno.2020.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/23/2022]
Abstract
The present study attempts to investigate the microbial communities and their potential to oxidize ammonia and sulfur at different sites of Arctic Fjord by targeted metagenomics. The high throughput sequencing revealed archaeal Thaumarchaeota (79.3%), Crenarchaeota (10.9%), Euryarchaeota (5.4%), and Woesearchaeota (2.9%) across different depths. In contrast, the bacterial communities depict predominance of Proteobacteria (52.6%), which comprises of dominant genera viz. Sulfurovum (11.2%) and Sulfurimonas (6.3%). Characterizing the metabolic potential of microbial communities with prime focus on the ammonia and sulfur cycling revealed the presence of amoABC and narGHYZ/ nxrAB genes encoding key enzymes. The ammonia cycling coupled with an augmentation of members of Nitrosopumilus belonging to the phylum Thaumarcheaota suggests the vital role of archaeal communities. Similarly, the persistence of chemolithoautotrophic members of Sulfurovum and Sulfurimonas along with the anaerobic genera Desulfocapsa and Desulfobulbus harboring SOX (sulfur-oxidation) system indicates the modulatory role of bacterial communities in sulfur cycling.
Collapse
|
10
|
Lai D, Hedlund BP, Xie W, Liu J, Phelps TJ, Zhang C, Wang P. Impact of Terrestrial Input on Deep-Sea Benthic Archaeal Community Structure in South China Sea Sediments. Front Microbiol 2020; 11:572017. [PMID: 33224115 PMCID: PMC7674655 DOI: 10.3389/fmicb.2020.572017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
Archaea are widespread in marine sediments and play important roles in the cycling of sedimentary organic carbon. However, factors controlling the distribution of archaea in marine sediments are not well understood. Here we investigated benthic archaeal communities over glacial-interglacial cycles in the northern South China Sea and evaluated their responses to sediment organic matter sources and inter-species interactions. Archaea in sediments deposited during the interglacial period Marine Isotope Stage (MIS) 1 (Holocene) were significantly different from those in sediments deposited in MIS 2 and MIS 3 of the Last Glacial Period when terrestrial input to the South China Sea was enhanced based on analysis of the long-chain n-alkane C31. The absolute archaeal 16S rRNA gene abundance in subsurface sediments was highest in MIS 2, coincident with high sedimentation rates and high concentrations of total organic carbon. Soil Crenarchaeotic Group (SCG; Nitrososphaerales) species, the most abundant ammonia-oxidizing archaea in soils, increased dramatically during MIS 2, likely reflecting transport of terrestrial archaea during glacial periods with high sedimentation rates. Co-occurrence network analyses indicated significant association of SCG archaea with benthic deep-sea microbes such as Bathyarchaeota and Thermoprofundales in MIS 2 and MIS 3, suggesting potential interactions among these archaeal groups. Meanwhile, Thermoprofundales abundance was positively correlated with total organic carbon (TOC), along with n-alkane C31 and sedimentation rate, indicating that Thermoprofundales may be particularly important in processing of organic carbon in deep-sea sediments. Collectively, these results demonstrate that the composition of heterotrophic benthic archaea in the South China Sea may be influenced by terrestrial organic input in tune with glacial-interglacial cycles, suggesting a plausible link between global climate change and microbial population dynamics in deep-sea marine sediments.
Collapse
Affiliation(s)
- Dengxun Lai
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.,School of Life Sciences, University of Nevada, Las Vegas, NV, United States
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, NV, United States.,Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, United States
| | - Wei Xie
- School of Marine Sciences, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Jingjing Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Tommy J Phelps
- Earth and Planetary Sciences, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.,Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Peng Wang
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| |
Collapse
|
11
|
Abstract
The marine subsurface is one of the largest habitats on Earth composed exclusively of microorganisms and harboring on the order of 1029 microbial cells. It is unclear if deep subsurface life impacts overlying seafloor diversity and biogeochemical cycling in the deep ocean. We analyzed the microbial communities of 172 seafloor surface sediment samples, including gas and oil seeps as well as sediments not subject to upward fluid flow. A strong correlation between typical subsurface clades and active geofluid seepage suggests that subsurface life is injected into the deep ocean floor at hydrocarbon seeps, a globally widespread hydrogeological phenomenon. This supply of subsurface-derived microbial populations, biomass, and metabolic potential thus increases biodiversity and impacts carbon cycling in the deep ocean. Marine cold seeps transmit fluids between the subseafloor and seafloor biospheres through upward migration of hydrocarbons that originate in deep sediment layers. It remains unclear how geofluids influence the composition of the seabed microbiome and if they transport deep subsurface life up to the surface. Here we analyzed 172 marine surficial sediments from the deep-water Eastern Gulf of Mexico to assess whether hydrocarbon fluid migration is a mechanism for upward microbial dispersal. While 132 of these sediments contained migrated liquid hydrocarbons, evidence of continuous advective transport of thermogenic alkane gases was observed in 11 sediments. Gas seeps harbored distinct microbial communities featuring bacteria and archaea that are well-known inhabitants of deep biosphere sediments. Specifically, 25 distinct sequence variants within the uncultivated bacterial phyla Atribacteria and Aminicenantes and the archaeal order Thermoprofundales occurred in significantly greater relative sequence abundance along with well-known seep-colonizing members of the bacterial genus Sulfurovum, in the gas-positive sediments. Metabolic predictions guided by metagenome-assembled genomes suggested these organisms are anaerobic heterotrophs capable of nonrespiratory breakdown of organic matter, likely enabling them to inhabit energy-limited deep subseafloor ecosystems. These results point to petroleum geofluids as a vector for the advection-assisted upward dispersal of deep biosphere microbes from subsurface to surface environments, shaping the microbiome of cold seep sediments and providing a general mechanism for the maintenance of microbial diversity in the deep sea.
Collapse
|