1
|
Khoshbayan A, Narimisa N, Elahi Z, Bostanghadiri N, Razavi S, Shariati A. Global prevalence of mutation in the mgrB gene among clinical isolates of colistin-resistant Klebsiella pneumoniae: a systematic review and meta-analysis. Front Microbiol 2024; 15:1386478. [PMID: 38912352 PMCID: PMC11190090 DOI: 10.3389/fmicb.2024.1386478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Colistin is used as a last resort for managing infections caused by multidrug-resistant bacteria. However, the high emergence of colistin-resistant strains has restricted the clinical use of this antibiotic in the clinical setting. In the present study, we evaluated the global prevalence of the mutation in the mgrB gene, one of the most important mechanisms of colistin resistance in Klebsiella pneumoniae. Methods Several databases, including Scopus, Medline (via PubMed), and Web of Science, were searched (until August 2023) to identify those studies that address the mgrB mutation in clinical isolates of K. pneumoniae. Using Stata software, the pooled prevalence of mgrB mutation and subgroup analyses for the year of publication, country, continent, mgrB mutation types, and detection methods of mgrB mutation were analyzed. Results Out of the 115 studies included in the analysis, the prevalence of mgrB mutations in colistin-resistant K. pneumoniae isolates was estimated at 65% of isolates, and mgrB variations with insertional inactivation had the highest prevalence among the five investigated mutations with 69%. The year subgroup analysis indicated an increase in mutated mgrB from 46% in 2014 to 61% in 2022. Europe had the highest prevalence of mutated mgrB at 73%, while Africa had the lowest at 54%. Conclusion Mutations in the mgrB gene are reported as one of the most common mechanisms of colistin resistance in K. pneumoniae, and the results of the present study showed that 65% of the reported colistin-resistant K. pneumoniae had a mutation in this gene.
Collapse
Affiliation(s)
- Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Vice Chancellery of Education and Research, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Narjess Bostanghadiri
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Molecular and Medicine research center, Khomein University of Medical Sciences, Khomein, Iran
- Infectious Diseases Research Center (IDRC), Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Salinas-Restrepo C, Naranjo-Duran AM, Quintana J, Bueno J, Guzman F, Hoyos Palacio LM, Segura C. Short Antimicrobial Peptide Derived from the Venom Gland Transcriptome of Pamphobeteus verdolaga Increases Gentamicin Susceptibility of Multidrug-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 13:6. [PMID: 38275316 PMCID: PMC10812672 DOI: 10.3390/antibiotics13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/27/2024] Open
Abstract
Infectious diseases account for nine percent of annual human deaths, and the widespread emergence of antimicrobial resistances threatens to significantly increase this number in the coming decades. The prospect of antimicrobial peptides (AMPs) derived from venomous animals presents an interesting alternative for developing novel active pharmaceutical ingredients (APIs). Small, cationic and amphiphilic peptides were predicted from the venom gland transcriptome of Pamphobeteus verdolaga using a custom database of the arthropod's AMPs. Ninety-four candidates were chemically synthesized and screened against ATCC® strains of Escherichia coli and Staphylococcus aureus. Among them, one AMP, named PvAMP66, showed broad-spectrum antimicrobial properties with selectivity towards Gram-negative bacteria. It also exhibited activity against Pseudomonas aeruginosa, as well as both an ATCC® and a clinically isolated multidrug-resistant (MDR) strain of K. pneumoniae. The scanning electron microscopy analysis revealed that PvAMP66 induced morphological changes of the MDR K. pneumoniae strain suggesting a potential "carpet model" mechanism of action. The isobologram analysis showed an additive interaction between PvAMP66 and gentamicin in inhibiting the growth of MDR K. pneumoniae, leading to a ten-fold reduction in gentamicin's effective concentration. A cytotoxicity against erythrocytes or peripheral blood mononuclear cells was observed at concentrations three to thirteen-fold higher than those exhibited against the evaluated bacterial strains. This evidence suggests that PvAMP66 can serve as a template for the development of AMPs with enhanced activity and deserves further pre-clinical studies as an API in combination therapy.
Collapse
Affiliation(s)
- Cristian Salinas-Restrepo
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Ana María Naranjo-Duran
- Grupo Toxinología, Alternativas Terapéuticas y Alimentarias, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia, Medellín 050012, Colombia; (C.S.-R.); (A.M.N.-D.)
| | - Juan Quintana
- Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín 050012, Colombia;
| | - Julio Bueno
- Grupo Reproducción, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia;
| | - Fanny Guzman
- Núcleo Biotecnología Curauma (NBC), Pontificia Universidad Católica de Valparaíso, Valparaíso 3100000, Chile;
| | - Lina M. Hoyos Palacio
- Escuela de Ciencias de la Salud, Grupo de Investigación Biología de Sistemas, Universidad Pontificia Bolivariana, Medellín 050031, Colombia;
| | - Cesar Segura
- Grupo Malaria, Facultad de Medicina, Universidad de Antioquia, Medellín 050012, Colombia
| |
Collapse
|
3
|
Chatupheeraphat C, Peamchai J, Luk-in S, Yainoy S, Eiamphungporn W. Synergistic effect of two antimicrobial peptides, BP203 and MAP-0403 J-2 with conventional antibiotics against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. PLoS One 2023; 18:e0294287. [PMID: 37972089 PMCID: PMC10653547 DOI: 10.1371/journal.pone.0294287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
Drug-resistant Enterobacterales infections are a great health concern due to the lack of effective treatments. Consequently, finding novel antimicrobials or combining therapies becomes a crucial approach in addressing this problem. BP203 and MAP-0403 J-2, novel antimicrobial peptides, have exhibited effectiveness against Gram-negative bacteria. In this study, we assessed the in vitro antibacterial activity of BP203 and MAP-0403 J-2, along with their synergistic interaction with conventional antibiotics including colistin, rifampicin, chloramphenicol, ceftazidime, meropenem, and ciprofloxacin against colistin-resistant Escherichia coli and Klebsiella pneumoniae clinical isolates. The minimal inhibitory concentrations (MIC) of BP203 and MAP-0403 J-2 against tested E. coli isolates were 2-16 and 8-32 μg/mL, respectively. However, for the majority of K. pneumoniae isolates, the MIC of BP203 and MAP-0403 J-2 were >128 μg/mL. Notably, our results demonstrated a synergistic effect when combining BP203 with rifampicin, meropenem, or chloramphenicol, primarily observed in most K. pneumoniae isolates. In contrast, no synergism was evident between BP203 and colistin, chloramphenicol, ceftazidime, rifampicin, or ciprofloxacin when tested against all E. coli isolates. Furthermore, synergistic effects between MAP-0403 J-2 and rifampicin, ceftazidime or colistin were observed against the majority of E. coli isolates. Similarly, the combined effect of MAP-0403 J-2 with rifampicin or chloramphenicol was synergistic in the majority of K. pneumoniae isolates. Importantly, these peptides displayed the stability at high temperatures, across a wide range of pH values, in specific serum concentrations and under physiological salt conditions. Both peptides also showed no significant hemolysis and cytotoxicity against mammalian cells. Our findings suggested that BP203 and MAP-0403 J-2 are promising candidates against colistin-resistant E. coli. Meanwhile, the synergism of these peptides and certain antibiotics could be of great therapeutic value as antimicrobial drugs against infections caused by colistin-resistant E. coli and K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sakda Yainoy
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| |
Collapse
|
4
|
Liu M, Xu X, Sun C, Zheng X, Zhou Q, Song C, Xu P, Gao Q, Liu B. Tea Tree Oil Improves Energy Metabolism, Non-Specific Immunity, and Microbiota Diversity via the Intestine-Hepatopancreas Axis in Macrobrachium rosenbergii under Low Fish Meal Diet Administration. Antioxidants (Basel) 2023; 12:1879. [PMID: 37891958 PMCID: PMC10604904 DOI: 10.3390/antiox12101879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Tea tree oil (TTO) is an essential plant oil with diverse antibacterial and antioxidant properties; however, whether the role played by TTO in low fish meal (LF) diets induced the observed effects in the farmed crustaceans remains unclear. Therefore, this study used Macrobrachium rosenbergii as the model crustacean, and an 8-week feeding experiment with NF (normal fish meal), LF (soybean meal replacing 40% fish meal), and LFT (LF with 200 mg/kg TTO) diets was conducted to evaluate the positive effects of TTO under the LF diet. Compared to the NF diet, the LF diet reduced hemolymph antioxidant capacity and non-specific immunity, and induced hepatopancreas apoptosis and damage. However, in comparison with LF, LTF significantly ameliorated morphological impairment in the hepatopancreas, improved hepatopancreas energy metabolism by upregulating the Bcl-2/Bax and Akt/mTOR pathways, and enhanced antioxidant and non-specific immune capacity by activating the NF-κB/NO pathway. In addition, LFT repaired intestinal barrier injury and the imbalance of intestinal microbiota induced by the LF diet. Moreover, the Pearson correlation revealed the variations of the above indicators, which were related to the abundance changes of Klebsiella, Clostridium sensu stricto 12, Thermobifida, Bifidobacterium, and Alistipes, indicating that these microbes might serve as prospective targets for the intestine-hepatopancreas axis to affect hepatopancreas apoptosis, metabolism, and non-specific immunity. In summary, 200 mg/kg TTO supplementation mediated gut microbiota and positively improved energy metabolism and non-specific immunity, thereby alleviating hepatopancreas dysplasia and damage induced by the LF diet in M. rosenbergii.
Collapse
Affiliation(s)
- Mingyang Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaodi Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Cunxin Sun
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Xiaochuan Zheng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qunlan Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Changyou Song
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| | - Qiang Gao
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Bo Liu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (M.L.); (X.X.); (C.S.); (Q.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (X.Z.); (C.S.)
| |
Collapse
|
5
|
Chatupheeraphat C, Peamchai J, Luk-in S, Eiamphungporn W. Synergistic effect and antibiofilm activity of the antimicrobial peptide K11 with conventional antibiotics against multidrug-resistant and extensively drug-resistant Klebsiella pneumoniae. Front Cell Infect Microbiol 2023; 13:1153868. [PMID: 37113135 PMCID: PMC10126264 DOI: 10.3389/fcimb.2023.1153868] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Infections caused by drug-resistant Klebsiella pneumoniae are now a serious problem for public health, associated with high morbidity and mortality due to limited treatment options. Therefore, new antibacterial agents or a combination of agents as the first line of treatment are urgently needed. K11 is a novel antimicrobial peptide (AMP) that has demonstrated in vitro antimicrobial activity against several types of bacteria. Additionally, K11 has previously shown no hemolytic activity. Herein, the antibacterial activity, the synergistic action of K11 in combination with different conventional antibiotics and the antibiofilm activity of K11 against multidrug-resistant (MDR) and extensively drug-resistant (XDR) K. pneumoniae were investigated. Meanwhile, the stability and ability to induce the bacterial resistance of K11 were also tested. Methods Fifteen clinical isolates of MDR/XDR K. pneumoniae were used in this study. The minimum inhibitory concentration (MIC) of K11 against these isolates was determined by the broth microdilution method. In vitro synergy between K11 and antibiotics was evaluated using the checkerboard methodology. The antibiofilm activity of K11 against K. pneumoniae strong biofilm producers were explored by the crystal violet staining. The stability in different environments and resistance induction of K11 were evaluated by MIC determination. Results The MIC values of K11 against MDR/XDR K. pneumoniae isolates were 8-512 μg/mL. Intriguingly, the synergistic effects were clearly observed for K11 in combination with chloramphenicol, meropenem, rifampicin, or ceftazidime, whereas no synergy was observed when K11 was combined with colistin. Besides, K11 effectively prevented biofilm formation against K. pneumoniae strong biofilm producers in a concentration-dependent manner starting at 0.25×MIC and exerted an enhancing effect when administered in combination with meropenem, chloramphenicol, or rifampicin. Additionally, K11 demonstrated high thermal and wide pH stability along with good stability in serum and physiological salts. Significantly, K. pneumoniae showed no induction of resistance even after prolonged exposure to a sub-inhibitory concentration of K11. Conclusion These findings indicate that K11 is a promising candidate with potent antibacterial and antibiofilm activities without inducing resistance and acts synergistically with conventional antibiotics against drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Chawalit Chatupheeraphat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jiratchaya Peamchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Sirirat Luk-in
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Warawan Eiamphungporn
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- *Correspondence: Warawan Eiamphungporn,
| |
Collapse
|
6
|
Duarte ELT, Rizek CF, Espinoza ES, Marchi AP, Noguera SV, Côrtes MF, Fernandes BHV, Guimarães T, de Maio Carrilho CMD, Neto LVP, Trindade PA, Costa SF. Virulomic Analysis of Multidrug-Resistant Klebsiella pneumoniae Isolates and Experimental Virulence Model Using Danio rerio (Zebrafish). Antibiotics (Basel) 2022; 11:antibiotics11111567. [PMID: 36358222 PMCID: PMC9686707 DOI: 10.3390/antibiotics11111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 11/11/2022] Open
Abstract
This study evaluates a possible correlation between multidrug-resistant Klebsiella pneumoniae strains and virulence markers in a Danio rerio (zebrafish) model. Whole-genome sequencing (WGS) was performed on 46 strains from three Brazilian hospitals. All of the isolates were colistin-resistant and harbored blaKPC-2. Ten different sequence types (STs) were found; 63% belonged to CC258, 22% to ST340, and 11% to ST16. The virulence factors most frequently found were type 3 fimbriae, siderophores, capsule regulators, and RND efflux-pumps. Six strains were selected for a time-kill experiment in zebrafish embryos: infection by ST16 was associated with a significantly higher mortality rate when compared to non-ST16 strains (52% vs. 29%, p = 0.002). Among the STs, the distribution of virulence factors did not differ significantly except for ST23, which harbored a greater variety of factors than other STs but was not related to a higher mortality rate in zebrafish. Although several virulence factors are described in K. pneumoniae, our study found ST16 to be the only significant predictor of a virulent phenotype in an animal model. Further research is needed to fully understand the correlation between virulence and sequence types.
Collapse
Affiliation(s)
- Edson Luiz Tarsia Duarte
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Camila Fonseca Rizek
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
- Correspondence:
| | - Evelyn Sanchez Espinoza
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Ana Paula Marchi
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Saidy Vasconez Noguera
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Marina Farrel Côrtes
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Bianca H. Ventura Fernandes
- Technical Division of Teaching and Research Support—Zebrafish Unit, Faculty of Medicine of the University of São Paulo Biotherism Center, Av. Dr. Arnaldo, 455, São Paulo 01246-903, Brazil
| | - Thais Guimarães
- Hospital Infection Control Commission, Hospital das Clinicas of Faculty of Medicine, University of São Paulo (HC-FMUSP), Dr. Eneas Carvalho de Aguiar 255, São Paulo 05403-000, Brazil
| | - Claudia M. D. de Maio Carrilho
- Hospital Infection Control Commission of Londrina’s University Hospital (HU-UEL), Av. Robert Koch, 60, Londrina 86038-350, Brazil
| | - Lauro V. Perdigão Neto
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| | - Priscila A. Trindade
- Health Sciences Center, Clinical and Toxicological Analysis Department, Federal University of Santa Maria (UFSM), Av. Roraima, 1000, Prédio 26, Camobi, Santa Maria 97105-900, Brazil
| | - Silvia Figueiredo Costa
- Medical Investigation Laboratory (LIM49), Tropical Medicine Institute of University of São Paulo, Av. Dr. Eneas Carvalho de Aguiar, 470, São Paulo 05403-000, Brazil
| |
Collapse
|
7
|
MgrB Mutations and Altered Cell Permeability in Colistin Resistance in Klebsiella pneumoniae. Cells 2022; 11:cells11192995. [PMID: 36230959 PMCID: PMC9564205 DOI: 10.3390/cells11192995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
There has been a resurgence in the clinical use of polymyxin antibiotics such as colistin due to the limited treatment options for infections caused by carbapenem-resistant Enterobacterales (CRE). However, this last-resort antibiotic is currently confronted with challenges which include the emergence of chromosomal and plasmid-borne colistin resistance. Colistin resistance in Klebsiella pneumoniae is commonly caused by the mutations in the chromosomal gene mgrB. MgrB spans the inner membrane and negatively regulates PhoP phosphorylation, which is essential for bacterial outer membrane lipid biosynthesis. The present review intends to draw attention to the role of mgrB chromosomal mutations in membrane permeability in K. pneumoniae that confer colistin resistance. With growing concern regarding the global emergence of colistin resistance, deciphering physical changes of the resistant membrane mediated by mgrB inactivation may provide new insights for the discovery of novel antimicrobials that are highly effective at membrane penetration, in addition to finding out how this can help in alleviating the resistance situation.
Collapse
|
8
|
Sarfraz M, Nguyen TTT, Wheler C, Köster W, Gerdts V, Dar A. Characterization of Dosage Levels for In Ovo Administration of Innate Immune Stimulants for Prevention of Yolk Sac Infection in Chicks. Vet Sci 2022; 9:vetsci9050203. [PMID: 35622731 PMCID: PMC9142911 DOI: 10.3390/vetsci9050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Innate immune stimulants, especially toll-like receptor (TLR) ligands and agonists, are the main players in the initiation of innate immunity and have been widely studied as alternatives to antibiotics to control infection. In the present study, we characterized the dosage levels of various innate immune stimulants, including unmethylated cytosine-phosphate-guanosine dinucleotide -containing oligodeoxynucleotides (CpG ODN), polyinosinic-polycytidylic acid (poly I:C), cyclic polyphosphazene 75B (CPZ75B), avian beta-defensin 2 (ABD2), and combinations of these reagents given in ovo. Data derived from a series of animal experiments demonstrated that the in ovo administration of 10–50 µg CpG ODN/embryo (on embryonic day 18) is an effective formulation for control of yolk sac infection (YSI) due to avian pathogenic Escherichia coli (E. coli) in young chicks. Amongst the different combinations of innate immune stimulants, the in ovo administration of CpG ODN 10 µg in combination with 15 µg of poly I:C was the most effective combination, offering 100% protection from YSI. It is expected that the introduction of these reagents to management practices at the hatchery level may serve as a potential replacement for antibiotics for the reduction of early chick mortality (ECM) due to YSI/colibacillosis.
Collapse
|
9
|
Fordham SME, Mantzouratou A, Sheridan E. Prevalence of insertion sequence elements in plasmids relating to mgrB gene disruption causing colistin resistance in Klebsiella pneumoniae. Microbiologyopen 2022; 11:e1262. [PMID: 35212479 PMCID: PMC8796155 DOI: 10.1002/mbo3.1262] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/04/2022] [Indexed: 12/05/2022] Open
Abstract
Colistin is a last resort antibiotic for the treatment of carbapenemase producing Klebsiella pneumoniae. The disruption of the mgrB gene by insertion sequences (ISs) is a mechanism mediating colistin resistance. Plasmids encode mobilizable IS elements which integrate into the mgrB gene in K. pneumoniae causing gene inactivation and colistin resistance. The species prevalence of mgrB-gene disrupting insertion elements ISL3 (ISKpn25), IS5 (ISKpn26), ISKpn14, and IS903B present on plasmids were assessed. IS containing plasmids were also scanned for antimicrobial resistance genes, including carbapenem resistant genes. Plasmids encoding ISs are abundant in K. pneumoniae. IS903B was found in 28 unique Inc groups, while ISKpn25 was largely carried by IncFIB(pQil) plasmids. ISKpn26 and ISKpn14 were most often found associated with IncFII(pHN7A8) plasmids. Of the 34 unique countries which contained any of the IS elements, ISKpn25 was identified from 26. ISKpn26, ISKpn14, and IS903B ISs were identified from 89.3%, 44.9%, and 23.9% plasmid samples from China. Plasmids carrying ISKpn25, ISKpn14, and ISKpn26 IS have a 4.6-, 6.0-, and 6.6-fold higher carbapenemase gene count, respectively, relative to IS903B-carrying plasmids. IS903B bearing plasmids have a 20-, 5-, and 5-fold higher environmental source isolation count relative to ISKpn25, ISKpn14, and ISKpn26 bearing plasmids. ISKpn25 present on IncFIB(pQil) sourced from clinical settings is established across multiple countries, while ISKpn26, ISKpn14, and IS903B appear most often in China. Carbapenemase presence in tandem with IS elements may help promote an extensively drug resistant profile in K. pneumoniae limiting already narrow treatment options.
Collapse
Affiliation(s)
| | - Anna Mantzouratou
- Department of Life & Environmental SciencesBournemouth UniversityPooleUK
| | - Elizabeth Sheridan
- Department of Medical MicrobiologyUniversity Hospitals Dorset NHS Foundation Trust, Poole HospitalPooleUK
| |
Collapse
|
10
|
Porcine iucA+ but rmpA- Klebsiella pneumoniae strains proliferate in blood of young piglets but are killed by IgM and complement dependent opsonophagocytosis when these piglets get older. Vet Microbiol 2022; 266:109361. [DOI: 10.1016/j.vetmic.2022.109361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/20/2022]
|
11
|
Al Adwani S, Padhi A, Karadottir H, Mörman C, Gräslund A, Végvári Á, Johansson J, Rising A, Agerberth B, Bergman P. Citrullination Alters the Antibacterial and Anti-Inflammatory Functions of the Host Defense Peptide Canine Cathelicidin K9CATH In Vitro. THE JOURNAL OF IMMUNOLOGY 2021; 207:974-984. [PMID: 34282000 DOI: 10.4049/jimmunol.2001374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 05/25/2021] [Indexed: 11/19/2022]
Abstract
K9CATH is the sole cathelicidin in canines (dogs) and exhibits broad antimicrobial activity against both Gram-positive and Gram-negative bacteria. K9CATH also modulates inflammatory responses and binds to LPS. These activities depend on the secondary structure and a net-positive charge of the peptide. Peptidylarginine deiminases (PAD) convert cationic peptidyl arginine to neutral citrulline. Thus, we hypothesized that citrullination is a biologically relevant modification of the peptide that would reduce the antibacterial and LPS-binding activities of K9CATH. Recombinant PAD2 and PAD4 citrullinated K9CATH to various extents and circular dichroism spectroscopy revealed that both native and citrullinated K9CATH exhibited similar α-helical secondary structures. Notably, citrullination of K9CATH reduced its bactericidal activity, abolished its ability to permeabilize the membrane of Gram-negative bacteria and reduced the hemolytic capacity. Electron microscopy showed that citrullinated K9CATH did not cause any morphological changes of Gram-negative bacteria, whereas the native peptide caused clear alterations of membrane integrity, concordant with a rapid bactericidal effect. Finally, citrullination of K9CATH impaired its capacity to inhibit LPS-mediated release of proinflammatory molecules from mouse and canine macrophages. In conclusion, citrullination attenuates the antibacterial and the LPS-binding properties of K9CATH, demonstrating the importance of a net positive charge for antibacterial lysis of bacteria and LPS-binding effects and suggests that citrullination is a means to regulate cathelicidin activities.
Collapse
Affiliation(s)
- Salma Al Adwani
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Department of Animal and Veterinary Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoudh, Muscat, Oman
| | - Avinash Padhi
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden.,Dermatology and Venereology Section, Department of Medicine Solna, Karolinska Institutet, Huddinge, Sweden
| | - Harpa Karadottir
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Cecilia Mörman
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ákos Végvári
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Anna Rising
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden; and
| | - Birgitta Agerberth
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Division of Clinical Microbiology, Karolinska Institutet, Huddinge, Sweden; .,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, Sweden
| |
Collapse
|
12
|
Pruss A, Kwiatkowski P, Łopusiewicz Ł, Masiuk H, Sobolewski P, Fijałkowski K, Sienkiewicz M, Smolak A, Giedrys-Kalemba S, Dołęgowska B. Evaluation of Chemical Changes in Laboratory-Induced Colistin-Resistant Klebsiella pneumoniae. Int J Mol Sci 2021; 22:ijms22137104. [PMID: 34281159 PMCID: PMC8268070 DOI: 10.3390/ijms22137104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/03/2022] Open
Abstract
This study evaluates the electrical potential and chemical alterations in laboratory-induced colistin-resistant Klebsiella pneumoniae, as compared to the susceptible strain using spectroscopic analyses. The minimal inhibitory concentration (MIC) of colistin, ζ-potential and chemical composition analysis of K. pneumoniae strains are determined. The results obtained for the K. pneumoniaeCol-R with induced high-level colistin resistance (MIC = 16.0 ± 0.0 mg/L) are compared with the K. pneumoniaeCol-S strain susceptible to colistin (MIC = 0.25 ± 0.0 mg/L). Fourier transform infrared (FTIR) and Raman spectroscopic studies revealed differences in bacterial cell wall structures and lipopolysaccharide (LPS) of K. pneumoniaeCol-R and K. pneumoniaeCol-S strains. In the beginning, we assumed that the obtained results could relate to a negative charge of the bacterial surface and different electrostatic interactions with cationic antibiotic molecules, reducing the affinity of colistin and leading to its lower penetration into K. pneumoniaeCol-R cell. However, no significant differences in the ζ-potential between the K. pneumoniaeCol-R and K. pneumoniaeCol-S strains are noticed. In conclusion, this mechanism is most probably associated with recognisable changes in the chemical composition of the K. pneumoniaeCol-R cell wall (especially in LPS) when compared to the susceptible strain.
Collapse
Affiliation(s)
- Agata Pruss
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-466-1659
| | - Łukasz Łopusiewicz
- Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology Szczecin, Janickiego 35, 71-270 Szczecin, Poland;
| | - Helena Masiuk
- Department of Medical Microbiology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (H.M.); (S.G.-K.)
| | - Peter Sobolewski
- Department of Polymer and Biomaterials Science, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, Piastów 45, 70-311 Szczecin, Poland;
| | - Karol Fijałkowski
- Department of Microbiology and Biotechnology, West Pomeranian University of Technology Szczecin, Piastów 45, 70-311 Szczecin, Poland;
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, Medical University of Łódź, Żeligowskiego 7/9, 90-752 Łódź, Poland;
| | - Adam Smolak
- Microbiological Laboratory, Independent Public Clinical Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Stefania Giedrys-Kalemba
- Department of Medical Microbiology, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (H.M.); (S.G.-K.)
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Chair of Microbiology, Immunology and Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland; (A.P.); (B.D.)
| |
Collapse
|
13
|
Nwabor OF, Terbtothakun P, Voravuthikunchai SP, Chusri S. A Bibliometric Meta-Analysis of Colistin Resistance in Klebsiella pneumoniae. Diseases 2021; 9:44. [PMID: 34202931 PMCID: PMC8293170 DOI: 10.3390/diseases9020044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/16/2022] Open
Abstract
Colistin is a last resort antibiotic medication for the treatment of infections caused by carbapenem-resistant Klebsiella pneumoniae. In recent years, various mechanisms have been reported to mediate colistin resistance in K. pneumoniae. This study reports a bibliometric analysis of published articles retrieved from the Scopus database relating to colistin resistance in K. pneumoniae. The research trends in colistin resistance and mechanisms of resistance were considered. A total of 1819 research articles published between 1995 and 2019 were retrieved, and the results indicated that 50.19% of the documents were published within 2017-2019. The USA had the highest participation with 340 (14.31%) articles and 14087 (17.61%) citations. Classification based on the WHO global epidemiological regions showed that the European Region contributed 42% of the articles while the American Region contributed 21%. The result further indicated that 45 countries had published at least 10 documents with strong international collaborations amounting to 272 links and a total linkage strength of 735. A total of 2282 keywords were retrieved; however, 57 keywords had ≥15 occurrences with 764 links and a total linkage strength of 2388. Furthermore, mcr-1, colistin resistance, NDM, mgrB, ceftazidime-avibactam, MDR, combination therapy, and carbapenem-resistant Enterobacteriaceae were the trending keywords. Concerning funders, the USA National Institute of Health funded 9.1% of the total research articles, topping the list. The analysis indicated poor research output, collaboration, and funding from Africa and South-East Asia and demands for improvement in international research collaboration.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Pawarisa Terbtothakun
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Supayang P. Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand;
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; (O.F.N.); (P.T.)
| |
Collapse
|
14
|
Ridyard KE, Overhage J. The Potential of Human Peptide LL-37 as an Antimicrobial and Anti-Biofilm Agent. Antibiotics (Basel) 2021; 10:antibiotics10060650. [PMID: 34072318 PMCID: PMC8227053 DOI: 10.3390/antibiotics10060650] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/20/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The rise in antimicrobial resistant bacteria threatens the current methods utilized to treat bacterial infections. The development of novel therapeutic agents is crucial in avoiding a post-antibiotic era and the associated deaths from antibiotic resistant pathogens. The human antimicrobial peptide LL-37 has been considered as a potential alternative to conventional antibiotics as it displays broad spectrum antibacterial and anti-biofilm activities as well as immunomodulatory functions. While LL-37 has shown promising results, it has yet to receive regulatory approval as a peptide antibiotic. Despite the strong antimicrobial properties, LL-37 has several limitations including high cost, lower activity in physiological environments, susceptibility to proteolytic degradation, and high toxicity to human cells. This review will discuss the challenges associated with making LL-37 into a viable antibiotic treatment option, with a focus on antimicrobial resistance and cross-resistance as well as adaptive responses to sub-inhibitory concentrations of the peptide. The possible methods to overcome these challenges, including immobilization techniques, LL-37 delivery systems, the development of LL-37 derivatives, and synergistic combinations will also be considered. Herein, we describe how combination therapy and structural modifications to the sequence, helicity, hydrophobicity, charge, and configuration of LL-37 could optimize the antimicrobial and anti-biofilm activities of LL-37 for future clinical use.
Collapse
|
15
|
Innate Effector Systems in Primary Human Macrophages Sensitize Multidrug-Resistant Klebsiella pneumoniae to Antibiotics. Infect Immun 2020; 88:IAI.00186-20. [PMID: 32513857 DOI: 10.1128/iai.00186-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 06/03/2020] [Indexed: 12/26/2022] Open
Abstract
Infections caused by multidrug-resistant (MDR) Klebsiella pneumoniae are difficult to treat with conventional antibiotics. Thus, alternative strategies to control the growth of MDR Klebsiella are warranted. We hypothesized that activation of innate effector systems could sensitize MDR K. pneumoniae to conventional antibiotics. Thus, human primary macrophages were stimulated with compounds known to activate innate immunity (vitamin D3, phenylbutyrate [PBA], and the aroylated phenylenediamine HO53) and then infected with MDR Klebsiella in the presence or absence of antibiotics. Antibiotics alone were ineffective against MDR Klebsiella in the cellular model, whereas vitamin D3, PBA, and HO53 reduced intracellular growth by up to 70%. The effect was further improved when the innate activators were combined with antibiotics. Vitamin D3- and PBA-induced bacterial killing was dependent on CAMP gene expression, whereas HO53 needed the production of reactive oxygen species (ROS), as shown in cells where the CYBB gene was silenced and in cells from a patient with reduced ROS production due to a deletion in the CYBB gene and skewed lyonization. The combination of innate effector activation by vitamin D3, PBA, and HO53 was effective in sensitizing MDR Klebsiella to conventional antibiotics in a primary human macrophage model. This study provides new evidence for future treatment options for K. pneumoniae.
Collapse
|