1
|
Thirumalaivasan N, Mahapatra S, Ramanathan G, Kumar A, Raja T, Muthuramamoorthy M, Pandit B, Pandiaraj S, Prakash S. Exploring antimicrobial and biocompatible applications of eco-friendly fluorescent carbon dots derived from fast-food packaging waste transformation. ENVIRONMENTAL RESEARCH 2024; 244:117888. [PMID: 38097060 DOI: 10.1016/j.envres.2023.117888] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
In the face of escalating environmental concerns, particularly the pervasive issue of non-biodegradable fast-food packaging waste, this study introduces a ground-breaking solution that not only addresses waste management but also advances biomedical technology. Utilizing the underexploited resource of Fucoidan, a sulfated polysaccharide from brown algae, we have innovatively transformed fast-food packaging waste into eco-friendly fluorescent carbon dots (FPCDs). These FPCDs were meticulously characterized through advanced techniques like FT-IR, TEM, and XRD, shedding light on their unique structure, morphology, and composition. A significant discovery of this study is the potent antimicrobial properties of these FPCDs, which demonstrate remarkable effectiveness against specific bacterial and fungal strains. This opens new avenues in the realm of biomedical applications, including imaging, drug delivery, and biosensing. Furthermore, extensive toxicity assessments, including the Brine shrimp lethality assay and Adult Artemia toxicity tests, underscore the safety of these nanoparticles, bolstering their applicability in sensitive medical scenarios. Our research presents a compelling dual approach, ingeniously tackling environmental sustainability issues by repurposing waste while simultaneously creating valuable materials for biomedical use. This dual benefit underscores the transformative potential of our approach, setting a precedent in both waste management and medical innovation.
Collapse
Affiliation(s)
- Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Sonalismita Mahapatra
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India
| | - Ganesan Ramanathan
- Postgraduate and Research Department of Microbiology, Sri Paramakalyani College, Alwarkurichi, 627412, India
| | - Anuj Kumar
- Department of Chemistry, GLA University, Mathura, 281406, India
| | - Thandavamoorthy Raja
- Material Science Lab, Department of Prosthodontics, Saveetha Dental College and Hospitals, SIMATS, Chennai- 77, Tamil Nadu, India
| | | | - Bidhan Pandit
- Department of Materials Science and Engineering and Chemical Engineering, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911, Legnes, Madrid, Spain
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.
| | - Santhiyagu Prakash
- Marine Biotechnology Research Laboratory, Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, OMR Campus, Tamilnadu Dr J Jayalalithaa Fisheries University, Vaniyanchavadi, Chennai, 603103, India.
| |
Collapse
|
2
|
Ramasubburayan R, Senthilkumar N, Kanagaraj K, Basumatary S, Kathiresan S, Manjunathan J, Revathi M, Selvaraj M, Prakash S. Environmentally benign, bright luminescent carbon dots from IV bag waste and chitosan for antimicrobial and bioimaging applications. ENVIRONMENTAL RESEARCH 2023; 238:117182. [PMID: 37739153 DOI: 10.1016/j.envres.2023.117182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Luminescent carbon dots have gained significant attention in various fields due to their unique optical properties and potential applications. Here, the study was aimed to propose a novel and sustainable approach for the synthesis of luminescent carbon dots (ICDs) using IV (Intravenous) medical bag waste. The ICDs were synthesized through a facile and cost-effective method that involved the carbonization of IV bag waste followed by surface functionalization with chitosan. The synthesized ICDs were characterized using UV-Visible spectrum (UV-Vis), Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction analysis (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The size of the ICDs is between 2 and 8 nm. The ICDs effectively inhibited the growth of both gram positive and gram negative bacterial strains with the inhibitory activity in the range of 11-14 mm and 12-18 mm, respectively. Results of antibiofilm activity of ICDs varying concentrations (50 and 100 μg/ml) showed that it effectively distorted the biofilm architecture and thereby validated its promising potentials. In vitro antioxidant activity showed remarkable DPPH radical scavenging potentials of ICDs (33.4%-70.1%). Results of MTT assay revealted that ICDs showed potent cytotoxic effect on HeLa cells in a dose dependant matter (25-400 μg/ml). Furthermore, when HeLa cells were excited at wavelengths of 380 nm, 440 nm and 540 nm, cell-imaging experiments using ICDs revealed the presence of blue, green, and red fluorescence. This innovative method not only addresses the issue of IV bag waste in a sustainable manner but also opens up exciting possibilities for the advancement of versatile carbon-based materials in the field of biomedicine.
Collapse
Affiliation(s)
- Ramasamy Ramasubburayan
- Marine Biomedical Research Laboratory & Environmental Toxicology Unit, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Nangan Senthilkumar
- Department of Chemistry, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun, Uttarakhand, India
| | - Kuppusamy Kanagaraj
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
| | - Sanjay Basumatary
- Department of Chemistry, Bodoland University, Kokrajhar, 783370, Assam, India
| | - Sellamuthu Kathiresan
- Department of Chemistry, Kongunadu College of Engineering and Technology (Autonomous), Trichy, Tamilnadu, India
| | - Jagadeesan Manjunathan
- Department of Biotechnology, Vels Institute of Science Technology and Advanced Studies, Chennai, Tamilnadu, India
| | - Meyyappan Revathi
- Department of Chemistry, Vels Institute of Science Technology and Advanced Studies, Pallavaram, Chennai, Tamilnadu, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Santhiyagu Prakash
- Department of Basic Sciences, Institute of Fisheries Post Graduate Studies, Tamilnadu Dr. J. Jayalalithaa Fisheries University, OMR Campus, Chennai, Tamilnadu, India.
| |
Collapse
|
3
|
Li Y, Yin M, Fang C, Fu Y, Dai X, Zeng W, Zhang L. Genetic analysis of resistance and virulence characteristics of clinical multidrug-resistant Proteus mirabilis isolates. Front Cell Infect Microbiol 2023; 13:1229194. [PMID: 37637463 PMCID: PMC10457174 DOI: 10.3389/fcimb.2023.1229194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Objective Proteus mirabilis is the one of most important pathogens of catheter-associated urinary tract infections. The emergence of multidrug-resistant (MDR) P. mirabilis severely limits antibiotic treatments, which poses a public health risk. This study aims to investigate the resistance characteristics and virulence potential for a collection of P. mirabilis clinical isolates. Methods and results Antibiotic susceptibility testing revealed fourteen MDR strains, which showed high resistance to most β-lactams and trimethoprim/sulfamethoxazole, and a lesser extent to quinolones. All the MDR strains were sensitive to carbapenems (except imipenem), ceftazidime, and amikacin, and most of them were also sensitive to aminoglycosides. The obtained MDR isolates were sequenced using an Illumina HiSeq. The core genome-based phylogenetic tree reveals the high genetic diversity of these MDR P. mirabilis isolates and highlights the possibility of clonal spread of them across China. Mobile genetic elements SXT/R391 ICEs were commonly (10/14) detected in these MDR P. mirabilis strains, whereas the presence of resistance island PmGRI1 and plasmid was sporadic. All ICEs except for ICEPmiChn31006 carried abundant antimicrobial resistance genes (ARGs) in the HS4 region, including the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-65. ICEPmiChn31006 contained the sole ARG blaCMY-2 and was nearly identical to the global epidemic ICEPmiJpn1. The findings highlight the important roles of ICEs in mediating the spread of ARGs in P. mirabilis strains. Additionally, these MDR P. mirabilis strains have great virulence potential as they exhibited significant virulence-related phenotypes including strong crystalline biofilm, hemolysis, urease production, and robust swarming motility, and harbored abundant virulence genes. Conclusion In conclusion, the prevalence of MDR P. mirabilis with high virulence potential poses an urgent threat to public health. Intensive monitoring is needed to reduce the incidence of infections by MDR P. mirabilis.
Collapse
Affiliation(s)
- Ying Li
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Ming Yin
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Chengju Fang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Fu
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoyi Dai
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Zeng
- Department of Clinical Laboratory, The Hejiang People’s hospital, Luzhou, Sichuan, China
| | - Luhua Zhang
- The School of Basic Medical Science and Public Center of Experimental Technology, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
4
|
Wang Z, Gao C, Zhang L, Sui R. Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer's disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways. Int J Biol Macromol 2023; 233:123169. [PMID: 36623626 DOI: 10.1016/j.ijbiomac.2023.123169] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/04/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Phytocompounds therapy has recently emerged as an effective strategy to treat Alzheimer's disease. Herein, the protective effect of hesperidin methylchalcone (HMC) was evaluated through Alzheimer's disease models of Neuro-2a cells and Wistar rats. The in vitro results showed that HMC possesses significant ability to inhibit the acetylcholinesterase enzyme and exhibiting anti-aggregation and disaggregation properties. Furthermore, HMC could protect the Neuro-2a cells against Aβ-induced neurotoxicity. Simultaneously, HMC treatment significantly improved the cognitive deficits caused by Aβ-peptide on spatial memory in Wistar rats. HMC significantly enhanced the cholinergic effects by inhibiting AChE, BuChE, β-secretase activity, caspase-3 activity, and attenuating macromolecular damages and apoptosis. Notably, HMC reduced the Aβ-induced oxidative stress by activating the antioxidative defence enzymes. In addition, the HMC treatment suppressed the expression of immunocytokines such as p-NF-κB p65, p-IκBα, induced by Aβ; whereas upregulating Nrf2, HO-1 in brain homogenate. These results suggest that HMC could attenuate Aβ-induced neuroinflammation in brain via suppressing NF-κB signalling pathway and activating the Nrf2/HO-1 pathway, thereby improving memory and cognitive impairments in Wistar rats. Overall, the present study reports that HMC can act as a potent candidate with multi-faceted neuroprotective potential against Aβ-induced memory dysfunction in Wistar rats for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Zhuo Wang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Chao Gao
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Lei Zhang
- School of Nursing, Jinzhou Medical University, Jinzhou 121099, China
| | - Rubo Sui
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121099, China.
| |
Collapse
|
5
|
Roshni PS, Alexpandi R, Abirami G, Durgadevi R, Cai Y, Kumar P, Ravi AV. Hesperidin methyl chalcone, a citrus flavonoid, inhibits Aeromonas hydrophila infection mediated by quorum sensing. Microb Pathog 2023; 177:106029. [PMID: 36775212 DOI: 10.1016/j.micpath.2023.106029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/10/2022] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Plant-derived phytocompounds are effective in treating a variety of ailments and disorders, the most common of which are bacterial infections in humans, which are a major public health concern. Flavonoids, one of the groups of phytocompounds, are known to have significant antimicrobial and anti-infective properties. Hence, the current study investigates the efficacy of the citrus flavonoid hesperidin methylchalcone (HMC) in addressing this major issue. The results of this study indicate that the anti-quorum sensing (anti-QS) action against Aeromonas hydrophila infections is exhibited with a decrease in biofilm development and virulence factors production through in vitro and in silico analyses. In addition, the qPCR findings indicate that HMC has antivirulence action on A. hydrophila by reducing the expression of QS-related virulence genes, including ahyR, ahyB, ahh1, aerA, and lip. Interestingly, HMC significantly rescued the A. hydrophila-infected zebrafish by reducing the internal colonization, demonstrating the in vivo anti-infective potential of HMC against A. hydrophila infection. Based on these results, this study recommends that HMC could be employed as a possible therapeutic agent to treat A. hydrophila-related infections in humans.
Collapse
Affiliation(s)
- Prithiviraj Swasthikka Roshni
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Rajaiah Alexpandi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Gurusamy Abirami
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Ravindran Durgadevi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India; Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, Tamil Nadu, 600117, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ponnuchamy Kumar
- Lab in Food Chemistry and Molecular Cancer Biology, Department of Animal Health and Management, Alagappa University, Karaikudi, 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India.
| |
Collapse
|
6
|
Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-Virulence Strategy of Novel Dehydroabietic Acid Derivatives: Design, Synthesis, and Antibacterial Evaluation. Int J Mol Sci 2023; 24:2897. [PMID: 36769220 PMCID: PMC9917773 DOI: 10.3390/ijms24032897] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Anti-virulence strategies are attractive and interesting strategies for controlling bacterial diseases because virulence factors are fundamental to the infection process of numerous serious phytopathogenics. To extend the novel anti-virulence agents, a series of dehydroabietic acid (DAA) derivatives decorated with amino alcohol unit were semi-synthesized based on structural modification of the renewable natural DAA and evaluated for their antibacterial activity against Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac), and Pseudomonas syringae pv. actinidiae (Psa). Compound 2b showed the most promising antibacterial activity against Xoo with an EC50 of 2.7 μg mL-1. Furthermore, compound 2b demonstrated remarkable control effectiveness against bacterial leaf blight (BLB) in rice, with values of 48.6% and 61.4% for curative and protective activities. In addition, antibacterial behavior suggested that compound 2b could suppress various virulence factors, including EPS, biofilm, swimming motility, and flagella. Therefore, the current study provided promising lead compounds for novel bactericides discovery by inhibiting bacterial virulence factors.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | | |
Collapse
|
7
|
Pyrogallol downregulates the expression of virulence-associated proteins in Acinetobacter baumannii and showing anti-infection activity by improving non-specific immune response in zebrafish model. Int J Biol Macromol 2023; 226:853-869. [PMID: 36526063 DOI: 10.1016/j.ijbiomac.2022.12.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/23/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii, a virulent uropathogen with widespread antibiotic resistance, has arisen as a critical scientific challenge, necessitating the development of innovative therapeutic agents. This is the first study reveal the proteomic changes in A. baumannii upon pyrogallol treatment for understanding the mechanisms using nano-LC-MS/MS-based quantitative proteomics and qPCR analysis. The obtained results found that pyrogallol treatment dramatically downregulated the expression level of several key proteins such as GroEL, DnaK, ClpB, SodB, KatE, Bap, CsuA/B, PgaA, PgaC, BfmR, OmpA, and SecA in A. baumannii, which are involved in chaperone-mediated oxidative stress responses, antioxidant defence system, biofilm formation, virulence enzyme production, bacterial adhesion, capsule formation, and antibiotic resistance. Accordingly, the pyrogallol dramatically enhanced the lifespan of A. baumannii-infected zebrafish by inhibiting bacterial colonization, demonstrating the anti-infective potential of pyrogallol against A. baumannii. Further, the histopathological results also demonstrated the disease protection efficacy of pyrogallol against the pathognomonic sign of A. baumannii infection. In addition, the pyrogallol treatment effectively improved the immune parameters such as serum myeloperoxidase activity, leukocyte respiratory burst activity, and serum lysozyme activity in zebrafish against A. baumannii infection. Based on the results, the present study strongly proposes pyrogallol as a promising therapeutic agent for treating A. baumannii infection.
Collapse
|
8
|
Shilpha J, Meyappan V, Sakthivel N. Bioinspired synthesis of gold nanoparticles from Hemidesmus indicus L. root extract and their antibiofilm efficacy against Pseudomonas aeruginosa. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Antibiotic Resistance in Proteus mirabilis: Mechanism, Status, and Public Health Significance. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.3.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteus mirabilis is a specific opportunistic pathogen of many infections including urinary tract infections (UTIs). Risk factors are linked with the acquisition of multidrug-resistant (MDR) to 3 or more classes of antimicrobials) strains. The resistance in extended-spectrum alpha-lactamase is rare, but the rising resistance in extended-spectrum beta-lactamase (ESBL) producing strains is a matter of concern. β-lactamases and antibiotic modifying enzymes mainly constitute the ESBLs resistance mechanism by hydrolyzing the antibiotics. Mutation or Porin loss could lead to the reduced permeability of antibiotics, enhanced efflux pump activity hindering the antibiotic access to the target site, antibiotic failure to bind at the target site because of the target modification, and lipopolysaccharide mutation causing the resistance against polymyxin antibiotics. This review aimed to explore various antimicrobial resistance mechanisms in Proteus mirabilis and their impact on public health status.
Collapse
|
10
|
Alexpandi R, Abirami G, Balaji M, Jayakumar R, Ponraj JG, Cai Y, Pandian SK, Ravi AV. Sunlight-active phytol-ZnO@TiO 2 nanocomposite for photocatalytic water remediation and bacterial-fouling control in aquaculture: A comprehensive study on safety-level assessment. WATER RESEARCH 2022; 212:118081. [PMID: 35077939 DOI: 10.1016/j.watres.2022.118081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
With a growing consciousness of the importance of nature stewardship, researchers are focusing their efforts on utilizing renewable energy, particularly solar energy, to address environmental concerns. In this context, photocatalysis has long been viewed as one of the most promising cleaning methods. Hence, we have prepared a sunlight-active phytol-assisted ZnO-TiO2 nanocomposite (PZTN) for photocatalytic bacterial deactivation and dye degradation process. The PZTN-photocatalysis effectively deactivated the bacterial pathogens as well as malachite green dye within 240 min under direct-sunlight. Moreover, this will be the first complete study on safety level assessment of photocatalytically-remediated water through toxicity studies. The obtained results evidenced that photocatalytically-deactivated bacteria and MG-dye showed to have no toxic effects, signifying that the PZTN-photocatalyzed water seems to be extremely safe for the environment. As a result of this research, we suggest that the PZTN could be a promising sunlight-active photocatalyst for environmental water treatment. On the other hand, biofouling is a ubiquitous phenomenon in the marine environment. Bacteria are the first organisms to foul surfaces and produce biofilms on man-made submerged materials. Interestingly, PZTN-coated PVC plastic-films effectively disallowed biofilms on their surface. This part of this research suggests that PZTN coated PVC-plastics are the best alternative for biofouling management.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Gurusamy Abirami
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Murugesan Balaji
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India; The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rengarajan Jayakumar
- Mandapam Regional Centre, Central Marine Fisheries Research Institute, Mandapam, Tamil Nadu, India
| | - Jeyaraj Godfred Ponraj
- TIL Biosciences - Animal Health Division of Tablets (India) Limited, Jhaver Centre, Egmore, Chennai 600 008, India
| | - Yurong Cai
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education, College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shunmugiah Karutha Pandian
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology & Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi 630003, India.
| |
Collapse
|
11
|
Tocopherol and phytol possess anti-quorum sensing mediated anti-infective behavior against Vibrio campbellii in aquaculture: An in vitro and in vivo study. Microb Pathog 2021; 161:105221. [PMID: 34627940 DOI: 10.1016/j.micpath.2021.105221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/09/2021] [Accepted: 09/29/2021] [Indexed: 01/21/2023]
Abstract
Phytocompounds have long been well recognized in medicine and pharmacy. The natural compounds are frequently utilized as the fundamental resource in the development of novel therapeutic agents to treat bacterial infections. The rapid emergence of bacterial infections, particularly caused by Vibrio species, is seen as a serious concern for the development of aquaculture industries, resulting in substantial economic losses throughout the world. Notably, the presence of Vibrio campbellii in aquatic environments will be extremely problematic, leading to significant mortality in aquatic organisms. As a result, novel therapeutic agents are desperately needed to treat such diseases. This is the first research to demonstrate that plant-derived active compounds, tocopherol and phytol, are effective against V. campbellii infection in tomato clownfish. The findings showed that tocopherol and phytol significantly decreased the production of biofilm and virulence factors such as hemolysin, protease, lipase, hydrophobic index, and swimming motility in V. campbellii, without influencing the bacterial growth. In vivo experiments with tomato clownfish also proved that these phytocompound treatments significantly increased the survival rates of infected fishes by hindering the intestinal colonization of V. campbellii in tomato clownfish. Further, the disease protection efficacy against the pathognomonic sign of V. campbellii-infection was verified by histopathological investigation of the gills, gut, and kidney. Altogether, the results suggest that tocopherol and phytol could be promising therapeutic agents for the treatment of V. campbellii infections in aquaculture.
Collapse
|
12
|
Alexpandi R, Ponraj JG, Swasthikka RP, Abirami G, Ragupathi T, Jayakumar R, Ravi AV. Anti-QS mediated anti-infection efficacy of probiotic culture-supernatant against Vibrio campbellii infection and the identification of active compounds through in vitro and in silico analyses. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Durgadevi R, Abirami G, Swasthikka RP, Alexpandi R, Pandian SK, Ravi AV. Proteomic analysis deciphers the multi-targeting antivirulence activity of tannic acid in modulating the expression of MrpA, FlhD, UreR, HpmA and Nrp system in Proteus mirabilis. Int J Biol Macromol 2020; 165:1175-1186. [PMID: 33007322 DOI: 10.1016/j.ijbiomac.2020.09.233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 09/25/2020] [Indexed: 12/28/2022]
Abstract
In the present study, the multi-targeting antivirulence activity of tannic acid (TA) was explored against Proteus mirabilis through MS-based proteomic approach. The in vitro biofilm biomass quantification assay and microscopic analysis demonstrated the antibiofilm activity of TA against P. mirabilis in which, minimum biofilm inhibitory concentration (MBIC) of TA was found to be 200 μg/mL concentration. Moreover, the nanoscale liquid chromatography coupled to tandem mass spectrometry (nano LC-MS/MS) analysis revealed that TA (at MBIC) differentially regulated the proteins involved in fimbrial adhesion, flagellar motility, iron acquisition, Fe-S cluster assembly, heat shock response, virulence enzymes, and toxin secretion. Further, the transcriptomic analysis validated the outcomes of proteomic analysis in which, the expression level of virulence genes responsible for MR/P fimbrial adhesion (mrpA), flagellar transcriptional activation (flhD), biosynthesis of urease (ureR), hemolysin (hpmA), non-ribosomal peptide siderophore system (Nrp), oxidative stress responsible enzymes and fitness factors proteins were down-regulated in TA exposed P. mirabilis. These observations were also in correspondence with the in vitro bioassays. Thus, this study reports the feasibility of TA to act as a promising therapeutic agent against multifactorial P. mirabilis infections.
Collapse
Affiliation(s)
- Ravindran Durgadevi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Gurusamy Abirami
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India.
| |
Collapse
|
14
|
Virulence, resistance and clonality of Proteus mirabilis isolated from patients with community-acquired urinary tract infection (CA-UTI) in Brazil. Microb Pathog 2020; 152:104642. [PMID: 33246088 PMCID: PMC7938216 DOI: 10.1016/j.micpath.2020.104642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Urinary tract infections (UTIs) are among the most common human infections, both in hospitals and in communities. Proteus mirabilis is known to cause community-acquired urinary tract infection (CA-UTI) and is an important causative agent of nosocomial UTIs. The pathogenesis of this species is related to its ability to manifest virulence factors, such as biofilms, adhesion molecules, urease, proteases, siderophores, and toxins. In this study, we investigated the virulence, sensitivity to antimicrobials, and clonal relationship of 183 strains isolated from the urine of CA-UTI patients in Londrina, Paraná State, Brazil. A total of 100% of the strains were positive for hpmA, ptA, zapA, mrpA, pmfA, ireA, and atfA virulence genes. The ucaA gene was positive in 81.4% of the cases. The strains showed high rates of sensitivity to the evaluated antimicrobials, and only one was ESBL-positive. All the tested bacteria showed the capacity to form biofilms: 73.2% had a very strong intensity, while 25.7% had a strong intensity, and 1.1% had a moderate intensity. Regarding clonality, 40 clonal clusters were found among the microorganisms tested. Our results showed that strains of P. mirabilis isolated from CA-UTI patients have several virulence factors. Although the urinary clinical isolates studied showed high sensitivity to antimicrobials, the strains showed a strong capacity to form biofilms, making antibiotic therapy difficult. In addition, it was observed that there were clones of P. mirabilis circulating in the city of Londrina. All strains presented a variety of virulence genes. It was observed that there were clones of P. mirabilis circulating. 98.1% of strains produced strong or very strong biofilm.
Collapse
|
15
|
Abirami G, Alexpandi R, Durgadevi R, Kannappan A, Veera Ravi A. Inhibitory Effect of Morin Against Candida albicans Pathogenicity and Virulence Factor Production: An in vitro and in vivo Approaches. Front Microbiol 2020; 11:561298. [PMID: 33193145 PMCID: PMC7644646 DOI: 10.3389/fmicb.2020.561298] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 01/27/2023] Open
Abstract
Candida albicans is considered an exclusive etiologic agent of candidiasis, a very common fungal infection in human. The expression of virulence factors contributes highly to the pathogenicity of C. albicans. These factors include biofilm formation, yeast-to-hyphal transition, adhesins, aspartyl proteases, and phospholipases secretion. Moreover, resistance development is a critical issue for the therapeutic failure of antifungal agents against systemic candidiasis. To circumvent resistance development, the present study investigated the virulence targeted therapeutic activity of the phyto-bioactive compound morin against C. albicans. Morin is a natural compound commonly found in medicinal plants and widely used in the pharmaceutical and cosmetic products/industries. The present study explicated the significant inhibitory potential of morin against biofilm formation and other virulence factors' production, such as yeast-hyphal formation, phospholipase, and exopolymeric substances, in C. albicans. Further, qPCR analysis confirmed the downregulation of biofilm and virlence-related genes in C. albicans upon morin treatment, which is in correspondence with the in vitro bioassays. Further, the docking analysis revealed that morin shows strong affinity with Hwp-1 protein, which regulates the expression of biofilm and hyphal formation in C. albicans and, thereby, abolishes fungal pathogenicity. Moreover, the anti-infective potential of morin against C. albicans-associated systemic candidiasis is confirmed through an in vivo approach using biomedical model organism zebrafish (Danio rerio). The outcomes of the in vivo study demonstrate that the morin treatment effectively rescues animals from C. albicans infections and extends their survival rate by inhibiting the internal colonization of C. albicans. Histopathology analysis revealed extensive candidiasis-related pathognomonic changes in the gills, intestine, and kidney of animals infected with C. albicans, while no extensive abnormalities were observed in morin-treated animals. The results evidenced that morin has the ability to protect against the pathognomonic effect and histopathological lesions caused by C. albicans infection in zebrafish. Thus, the present study suggests that the utilization of morin could act as a potent therapeutic medication for C. albicans instigated candidiasis.
Collapse
Affiliation(s)
- Gurusamy Abirami
- Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, India
| | - Rajaiah Alexpandi
- Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, India
| | - Ravindran Durgadevi
- Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, India
| | - Arunachalam Kannappan
- Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, India
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Arumugam Veera Ravi
- Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, India
| |
Collapse
|
16
|
Alexpandi R, Gopi CVVM, Durgadevi R, Kim HJ, Pandian SK, Ravi AV. Metal sensing-carbon dots loaded TiO 2-nanocomposite for photocatalytic bacterial deactivation and application in aquaculture. Sci Rep 2020; 10:12883. [PMID: 32733064 PMCID: PMC7393085 DOI: 10.1038/s41598-020-69888-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/23/2020] [Indexed: 11/08/2022] Open
Abstract
Nowadays, bioactive nanomaterials have been attracted the researcher's enthusiasm in various fields. Herein, Diplocyclos palmatus leaf extract-derived green-fluorescence carbon dots (DP-CDs) were prepared using the hydrothermal method. Due to the strong fluorescence stability, the prepared DP-CDs were coated on filter-paper to make a fluorometric sensor-strip for Fe3+ detection. After, a bandgap-narrowed DP-CDs/TiO2 nanocomposite (DCTN) was prepared using the methanolic extract of D. palmatus. The prepared DCTN exhibited improved photocatalytic bacterial deactivation under sunlight irradiation. The DCTN-photocatalysis slaughtered V. harveyi cells by the production of reactive oxygen species, which prompting oxidative stress, damaging the cell membrane and cellular constituents. These results suggest the plausible mode of bactericidal action of DCTN-photocatalysis under sunlight. Further, the DCTN has shown potent anti-biofilm activity against V. harveyi, and thereby, DCTN extended the survival of V. harveyi-infected shrimps during the in vivo trial with Litopenaeus vannamei. Notably, this is the first report for the disinfection of V. harveyi-mediated acute-hepatopancreatic necrosis disease (AHPND) using nanocomposite. The reduced internal-colonization of V. harveyi on the hepatopancreas as well as the rescue action of the pathognomonic effect in the experimental animals demonstrated the anti-infection potential of DCTN against V. harveyi-mediated AHPND in aquaculture.
Collapse
Affiliation(s)
- Rajaiah Alexpandi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Chandu V V Muralee Gopi
- Lab in Laser and Sensor Application, School of Electrical and Computer Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Ravindran Durgadevi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Hee-Je Kim
- Lab in Laser and Sensor Application, School of Electrical and Computer Engineering, Pusan National University, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan, 46241, South Korea
| | - Shunmugiah Karutha Pandian
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India
| | - Arumugam Veera Ravi
- Lab in Microbiology and Marine Biotechnology, Department of Biotechnology, School of Biological Sciences, Alagappa University, Karaikudi, 630 003, India.
| |
Collapse
|
17
|
Durgadevi R, Kaleeshwari R, Swetha TK, Alexpandi R, Karutha Pandian S, Veera Ravi A. Attenuation of Proteus mirabilis colonization and swarming motility on indwelling urinary catheter by antibiofilm impregnation: An in vitro study. Colloids Surf B Biointerfaces 2020; 194:111207. [PMID: 32590245 DOI: 10.1016/j.colsurfb.2020.111207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 02/05/2023]
Abstract
Proteus mirabilis is one of the important etiologic agents of urinary tract infections (UTI), which complicates the long-term urinary catheterization process in clinical settings. Owing to its crystalline biofilm forming ability and flagellar motility, elimination of P. mirabilis from urinary system becomes very difficult. Thus, the present study is focused to prepare antibiofilm-impregnated Silicone Foley Catheter (SFC) to prevent P. mirabilis instigated UTIs. Through solvent swelling method, the antibiofilm compounds such as linalool (LIN) and 2-hydroxy-4-methoxy benzaldehyde (HMB) were successfully infused into SFCs. Surface topography was studied using AFM analysis, which unveiled the unmodified surface roughness of normal and antibiofilm-impregnated SFCs. In addition, UV-spectrometric and FT-IR analyses revealed good impregnation efficacy and prolonged stability of antibiofilm compounds. Further, in vitro biofilm biomass quantification assay exhibited a maximum of 87 % and 84 % crystalline biofilm inhibition in LIN (350 μg/cm3) and HMB (120 μg/cm3) impregnated SFCs, respectively against P. mirabilis in artificial urine medium. Also, the LIN & HMB-impregnated SFCs demonstrated long-term crystalline biofilm inhibitory activity for more than 30 days, which is ascribed to the sustained release of the compounds. Furthermore, the results of swarming motility analysis revealed the efficacy of antibiofilm-impregnated catheters to mitigate the migration of pathogens over them. Thus, antibiofilm-impregnated catheter is proposed to act as a suitable strategy for reducing P. mirabilis infections and associated complications in long-term urinary catheter users.
Collapse
|