1
|
Peng Y, Li C, Zhang L, Yu R, Wang Y, Pan L, Guo H, Wei Y, Liu X. Cyclophilin A promotes porcine deltacoronavirus replication by regulating autophagy via the Ras/AKT/NF-κB pathway. Vet Microbiol 2024; 297:110190. [PMID: 39084161 DOI: 10.1016/j.vetmic.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Porcine deltacoronavirus (PDCoV) is an important enteric coronavirus that has caused major worldwide economic losses in the pig industry. Previous studies have shown that cyclophilin A (CypA), a key player in aetiological agent infection, is involved in regulating viral infection. However, the role of CypA during PDCoV replication remains unknown. Therefore, in this study, the role of CypA in PDCoV replication was determined. The results demonstrated that PDCoV infection increased CypA expression in LLC-PK1 cells. CypA overexpression substantially promoted PDCoV replication. Proteomic analysis was subsequently used to assess changes in total protein expression levels after CypA overexpression. Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were used to further determine the mechanisms by which CypA affects viral replication. Proteomic analysis revealed that CypA protein overexpression significantly upregulated 75 differentially expressed proteins and significantly downregulated 172 differentially expressed proteins. The differentially expressed proteins were involved mainly in autophagy and activation of the host innate immune pathway. Subsequent experimental results revealed that the CypA protein promoted viral replication by reducing the levels of natural immune cytokines and mitigated the inhibitory effect of chloroquine (CQ) on viral replication. Further investigation revealed that CypA could activate the Ras/AKT/NF-κB pathway, mediate autophagy signalling and promote PDCoV replication. In summary, the findings of this study may help elucidate the role of CypA in PDCoV replication.
Collapse
Affiliation(s)
- Yousheng Peng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Chenchen Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Ruiming Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China; State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yonglu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Li Pan
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China
| | - Yanming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, PR China.
| |
Collapse
|
2
|
Li S, Yang L, Li Y, Yue W, Xin S, Li J, Long S, Zhang W, Cao P, Lu J. Epstein-Barr Virus Synergizes with BRD7 to Conquer c-Myc-Mediated Viral Latency Maintenance via Chromatin Remodeling. Microbiol Spectr 2023; 11:e0123722. [PMID: 36728436 PMCID: PMC10101146 DOI: 10.1128/spectrum.01237-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/06/2023] [Indexed: 02/03/2023] Open
Abstract
Epstein-Barr virus (EBV) switches between latent and lytic phases in hosts, which is important in the development of related diseases. However, the underlying mechanism of controlling the viral biphasic life cycle and how EBV mediates this regulation remain largely unknown. This study identified bromodomain-containing protein 7 (BRD7) as a crucial host protein in EBV latent infection. Based on the chromatin immunoprecipitation (ChIP) sequencing of endogenous BRD7 in Burkitt lymphoma cells, we found that EBV drove BRD7 to regulate cellular and viral genomic loci, including the transcriptional activation of c-Myc, a recently reported regulator of EBV latency. Additionally, EBV-mediated BRD7 signals were enriched around the FUSE (far-upstream sequence element) site in chromosome 8 and the enhancer LOC108348026 in the lgH locus, which might activate the c-Myc alleles. Mechanically, EBV-encoded nuclear antigen 1 (EBNA1) bound to BRD7 and colocalized at promoter regions of the related genes, thus serving as cofactors for the maintenance of viral latency. Moreover, the disruption of BRD7 decreased the c-Myc expression, induced the BZLF1 expression, and reactivated the lytic cycle. Our findings reveal the unique role of BRD7 to synergize with EBV in maintaining the viral latency state via chromatin remodeling. This study paves the way for understanding the new molecular mechanism of EBV-induced chromatin remodeling and latent-lytic switch, providing novel therapeutic candidate targets for EBV persistent infection. IMPORTANCE When establishing persistent infection in most human hosts, EBV is usually latent. How the viral latency is maintained in cells remains largely unknown. c-Myc was recently reported to act as a controller of the lytic switch, while whether and how EBV regulates it remain to be explored. Here, we identified that BRD7 is involved in controlling EBV latency. We found that EBV-mediated BRD7 was enriched in both the normal promoter regions and the translocation alleles of c-Myc, and disruption of BRD7 decreased c-Myc expression to reactivate the lytic cycle. We also demonstrated that EBV-encoded EBNA1 bound to and regulated BRD7. Therefore, we reveal a novel mechanism by which EBV can regulate its infection state by coordinating with host BRD7 to target c-Myc. Our findings will help future therapeutic intervention strategies for EBV infection and pathogenesis.
Collapse
Affiliation(s)
- Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wenxing Yue
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Jing Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Sijing Long
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Wentao Zhang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| | - Pengfei Cao
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
Xin S, Liu L, Li Y, Yang J, Zuo L, Cao P, Yan Q, Li S, Yang L, Cui T, Lu J. Cyclophilin A binds to AKT1 and facilitates the tumorigenicity of Epstein-Barr virus by mediating the activation of AKT/mTOR/NF-κB positive feedback loop. Virol Sin 2022; 37:913-921. [PMID: 36075565 PMCID: PMC9797372 DOI: 10.1016/j.virs.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 08/31/2022] [Indexed: 01/19/2023] Open
Abstract
The AKT/mTOR and NF-κB signalings are crucial pathways activated in cancers including nasopharyngeal carcinoma (NPC), which is prevalent in southern China and closely related to Epstein-Barr virus (EBV) infection. How these master pathways are persistently activated in EBV-associated NPC remains to be investigated. Here we demonstrated that EBV-encoded latent membrane protein 1 (LMP1) promoted cyclophilin A (CYPA) expression through the activation of NF-κB. The depletion of CYPA suppressed cell proliferation and facilitated apoptosis. CYPA was able to bind to AKT1, thus activating AKT/mTOR/NF-κB signaling cascade. Moreover, the use of mTOR inhibitor, rapamycin, subverted the activation of the positive feedback loop, NF-κB/CYPA/AKT/mTOR. It is reasonable that LMP1 expression derived from initial viral infection is enough to assure the constant potentiation of AKT/mTOR and NF-κB signalings. This may partly explain the fact that EBV serves as a tumor-promoting factor with minimal expression of the viral oncoprotein LMP1 in malignancies. Our findings provide new insight into the understanding of causative role of EBV in tumorigenicity during latent infection.
Collapse
Affiliation(s)
- Shuyu Xin
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Lingzhi Liu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Yanling Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Jing Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Lielian Zuo
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Pengfei Cao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Qijia Yan
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China
| | - Shen Li
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Li Yang
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Taimei Cui
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China
| | - Jianhong Lu
- Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, China,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, Central South University, Changsha, 410078, China,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, China,Department of Hematology, National Clinical Research Center for Geriatric Disorders, Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, China,Corresponding author.
| |
Collapse
|
4
|
Long S, Yang L, Dang W, Xin S, Jiang M, Zhang W, Li J, Wang Y, Zhang S, Lu J. Cellular Deubiquitylating Enzyme: A Regulatory Factor of Antiviral Innate Immunity. Front Microbiol 2021; 12:805223. [PMID: 34966378 PMCID: PMC8710732 DOI: 10.3389/fmicb.2021.805223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) are proteases that crack the ubiquitin code from ubiquitylated substrates to reverse the fate of substrate proteins. Recently, DUBs have been found to mediate various cellular biological functions, including antiviral innate immune response mediated by pattern-recognition receptors (PRRs) and NLR Family pyrin domain containing 3 (NLRP3) inflammasomes. So far, many DUBs have been identified to exert a distinct function in fine-tuning antiviral innate immunity and are utilized by viruses for immune evasion. Here, the recent advances in the regulation of antiviral responses by DUBs are reviewed. We also discussed the DUBs-mediated interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and antiviral innate immunity. The understanding of the mechanisms on antiviral innate immunity regulated by DUBs may provide therapeutic opportunities for viral infection.
Collapse
Affiliation(s)
- Sijing Long
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Li Yang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wei Dang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Shuyu Xin
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Mingjuan Jiang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Wentao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Li
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Yiwei Wang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Senmiao Zhang
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jianhong Lu
- Department of Hematology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China.,NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China.,China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
5
|
Dang W, Cao P, Yan Q, Yang L, Wang Y, Yang J, Xin S, Zhang J, Li J, Long S, Zhang W, Zhang S, Lu J. IGFBP7-AS1 is a p53-responsive long noncoding RNA downregulated by Epstein-Barr virus that contributes to viral tumorigenesis. Cancer Lett 2021; 523:135-147. [PMID: 34634383 DOI: 10.1016/j.canlet.2021.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/16/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023]
Abstract
Epstein-Barr virus (EBV) is closely related to the development of several malignancies, such as B-cell lymphoma (B-CL), by the mechanism through which these malignancies develop remains largely unknown. We previously observed downregulation of the long noncoding RNA (lncRNA) IGFBP7-AS1 in response to EBV infection. However, the role of IGFBP7-AS1 in EBV-associated cancers has not been clarified. Here, we found that expression of IGFBP7-AS1, as well as its sense gene IGFBP7, is decreased in EBV-positive B-CL cells and clinical tissues. IGFBP7-AS1 stabilizes IGFBP7 mRNA by forming a duplex based on their overlapping regions. The tumour suppressor p53 transcriptionally activates IGFBP7-AS1 expression by binding to the promoter region of the lncRNA gene. The IGFBP7-AS1 expression is able to be rescued in EBV-positive cells in wild-type (wt) p53-dependent manner. IGFBP7-AS1 inhibits the proliferation and promotes the apoptosis of B-CL cells. Moreover, tumorigenic properties due to the depletion of IGFBP7-AS1 were restored by exogenous expression of IGFBP7 or wt-p53. Furthermore, the functional p53/IGFBP7-AS1/IGFBP7 axis facilitates apoptosis by suppressing the production and secretion of the NPPB signal peptide and further regulating the cGMP-PKG signalling pathway. This study demonstrates that EBV promotes tumorigenesis, particularly in B-CL progression, by downregulating the novel p53-responsive lncRNA IGFBP7-AS1.
Collapse
Affiliation(s)
- Wei Dang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Cao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Li Yang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Yiwei Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Yang
- NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Shuyu Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jing Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Sijing Long
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Wentao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Senmiao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China
| | - Jianhong Lu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, 410078, Hunan, China; NHC Key Laboratory of Carcinogenesis, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, Hunan, China; Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410080, Hunan, China; China-Africa Research Center of Infectious Diseases, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
6
|
Cyclophilin A Inhibits Human Respiratory Syncytial Virus (RSV) Replication by Binding to RSV-N through Its PPIase Activity. J Virol 2021; 95:e0056321. [PMID: 34011546 PMCID: PMC8274602 DOI: 10.1128/jvi.00563-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is the most common pathogen which causes acute lower respiratory infection (ALRI) in infants. Recently, virus-host interaction has become a hot spot of virus-related research, and it needs to be further elaborated for RSV infection. In this study, we found that RSV infection significantly increased the expression of cyclophilin A (cypA) in clinical patients, mice, and epithelial cells. Therefore, we evaluated the function of cypA in RSV replication and demonstrated that virus proliferation was accelerated in cypA knockdown host cells but restrained in cypA-overexpressing host cells. Furthermore, we proved that cypA limited RSV replication depending on its PPIase activity. Moreover, we performed liquid chromatography-mass spectrometry, and the results showed that cypA could interact with several viral proteins, such as RSV-N, RSV-P, and RSV-M2-1. Finally, the interaction between cypA and RSV-N was certified by coimmunoprecipitation and immunofluorescence. Those results provided strong evidence that cypA may play an inhibitory role in RSV replication through interaction with RSV-N via its PPIase activity. IMPORTANCE RSV-N, packed in the viral genome to form the ribonucleoprotein (RNP) complex, which is recognized by the RSV RNA-dependent RNA polymerase (RdRp) complex to initiate viral replication and transcription, plays an indispensable role in the viral biosynthesis process. cypA, binding to RSV-N, may impair this function by weakening the interaction between RSV-N and RSV-P, thus leading to decreased viral production. Our research provides novel insight into cypA antiviral function, including binding to viral capsid protein to inhibit viral replication, which may be helpful for new antiviral drug exploration.
Collapse
|
7
|
Abstract
Riparian forests were frequently cleared and converted to agricultural pastures, but in recent times these pastures are often revegetated in an effort to return riparian forest structure and function. We tested if there is a change in the soil bacterial taxonomy and function in areas of riparian forest cleared for agricultural pasture then revegetated, and if soil bacterial taxonomy and function is related to vegetation and soil physicochemical properties. The study was conducted in six riparian areas in south-eastern Australia, each comprising of three land-use types: remnant riparian forest, cleared forest converted to pasture, and revegetated pastures. We surveyed three strata of vegetation and sampled surface soil and subsoil to characterize physicochemical properties. Taxonomic and functional composition of soil bacterial communities were assessed using 16S rRNA gene sequences and community level physiological profiles, respectively. Few soil physiochemical properties differed with land use despite distinct vegetation in pasture relative to remnant and revegetated areas. Overall bacterial taxonomic and functional composition of remnant forest and revegetated soils were distinct from pasture soil. Land-use differences were not consistent for all bacterial phyla, as Acidobacteria were more abundant in remnant soils; conversely, Actinobacteria were more abundant in pasture soils. Overall, bacterial metabolic activity and soil carbon and nitrogen content decreased with soil depth, while bacterial metabolic diversity and evenness increased with soil depth. Soil bacterial taxonomic composition was related to soil texture and soil fertility, but functional composition was only related to soil texture. Our results suggest that the conversion of riparian forests to pasture is associated with significant changes in the soil bacterial community, and that revegetation contributes to reversing such changes. Nevertheless, the observed changes in bacterial community composition (taxonomic and functional) were not directly related to changes in vegetation but were more closely related to soil attributes.
Collapse
|
8
|
Molecular Mechanisms of DUBs Regulation in Signaling and Disease. Int J Mol Sci 2021; 22:ijms22030986. [PMID: 33498168 PMCID: PMC7863924 DOI: 10.3390/ijms22030986] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The large family of deubiquitinating enzymes (DUBs) are involved in the regulation of a plethora of processes carried out inside the cell by protein ubiquitination. Ubiquitination is a basic pathway responsible for the correct protein homeostasis in the cell, which could regulate the fate of proteins through the ubiquitin–proteasome system (UPS). In this review we will focus on recent advances on the molecular mechanisms and specificities found for some types of DUBs enzymes, highlighting illustrative examples in which the regulatory mechanism for DUBs has been understood in depth at the molecular level by structural biology. DUB proteases are responsible for cleavage and regulation of the multiple types of ubiquitin linkages that can be synthesized inside the cell, known as the ubiquitin-code, which are tightly connected to specific substrate functions. We will display some strategies carried out by members of different DUB families to provide specificity on the cleavage of particular ubiquitin linkages. Finally, we will also discuss recent progress made for the development of drug compounds targeting DUB proteases, which are usually correlated to the progress of many pathologies such as cancer and neurodegenerative diseases.
Collapse
|