1
|
Shaib H, Aoun P, Ghaddar A, Al Labadi H, Obeid Y. Multidrug Resistance and Plasmid Profiles of Escherichia coli Isolated from Lebanese Broiler Farms. Int J Microbiol 2023; 2023:8811675. [PMID: 37303775 PMCID: PMC10250091 DOI: 10.1155/2023/8811675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
The present study was undertaken to determine the antimicrobial resistance patterns and plasmid fingerprints of commensal Escherichia coli isolated from Lebanese broiler chickens. To that end, a total of 30 E. coli isolates were collected from 15 semi-open broiler farms from North Lebanon and Bekaa Valley. Results showed that all the isolates were resistant to at least nine out of 18 evaluated antimicrobial agents. The best-performing antibiotic families were Carbapenems (Imipenem) and Quinolones (Ciprofloxacin and Norfloxacin) to which only 0.0 and 8.3% of the isolates were resistant, respectively. Fifteen various plasmid profiles were depicted, and all the isolates were found to possess one or multiple plasmids. The plasmid sizes varied from 1.2 to 21.0 kbp, and the most commonly detected plasmid had a size of 5.7 kbp (23.3% of the isolates). There was no significant association between the number of plasmids per isolate and resistance to a particular drug. Nevertheless, the presence of specific plasmids, namely, the 2.2 or 7.7 kbp sized ones, was strongly correlated to Quinolones or Trimethoprim resistance, respectively. Both the 7.7 and 6.8 kbp plasmids showed mild correlation to Amikacin resistance, and the 5.7 kbp plasmid was mildly correlated to Piperacillin-Tazobactam resistance. Our findings highlight the need to revise the list of antimicrobials currently used in Lebanese poultry and associate the presence of specific plasmids to antimicrobial resistance patterns in E. coli isolates. The revealed plasmid profiles could also serve any future epidemiological investigation of poultry disease outbreaks in the country.
Collapse
Affiliation(s)
- Houssam Shaib
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Paul Aoun
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Ahmad Ghaddar
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Hamza Al Labadi
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Youssef Obeid
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
2
|
Patkowski JB, Dahlberg T, Amin H, Gahlot DK, Vijayrajratnam S, Vogel JP, Francis MS, Baker JL, Andersson M, Costa TRD. The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation. Nat Commun 2023; 14:1879. [PMID: 37019921 PMCID: PMC10076315 DOI: 10.1038/s41467-023-37600-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Conjugation is used by bacteria to propagate antimicrobial resistance (AMR) in the environment. Central to this process are widespread conjugative F-pili that establish the connection between donor and recipient cells, thereby facilitating the spread of IncF plasmids among enteropathogenic bacteria. Here, we show that the F-pilus is highly flexible but robust at the same time, properties that increase its resistance to thermochemical and mechanical stresses. By a combination of biophysical and molecular dynamics methods, we establish that the presence of phosphatidylglycerol molecules in the F-pilus contributes to the structural stability of the polymer. Moreover, this structural stability is important for successful delivery of DNA during conjugation and facilitates rapid formation of biofilms in harsh environmental conditions. Thus, our work highlights the importance of F-pilus structural adaptations for the efficient spread of AMR genes in a bacterial population and for the formation of biofilms that protect against the action of antibiotics.
Collapse
Affiliation(s)
- Jonasz B Patkowski
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Tobias Dahlberg
- Department of Physics, Umeå University, 901 87, Umeå, Sweden
| | - Himani Amin
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Sukhithasri Vijayrajratnam
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joseph P Vogel
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, 901 87, Umeå, Sweden
| | - Joseph L Baker
- Department of Chemistry, The College of New Jersey, Ewing, NJ, 08628, USA.
| | | | - Tiago R D Costa
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
3
|
Molecular Epidemiology of Plasmid-Mediated Types 1 and 3 Fimbriae Associated with Biofilm Formation in Multidrug Resistant Escherichia coli from Diseased Food Animals in Guangdong, China. Microbiol Spectr 2022; 10:e0250321. [PMID: 35969065 PMCID: PMC9603762 DOI: 10.1128/spectrum.02503-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Types 1 and 3 fimbriae in Enterobacteriaceae play versatile roles in bacterial physiology including attachment, invasion, cell motility as well as with biofilm formation and urinary tract infections. Herein, we investigated the prevalence and transmission of plasmid-mediated types 1 and 3 fimbriae from 1753 non-duplicate Enterobacteriaceae from diseased food Animals. We identified 123 (7.01%) strong biofilm producers and all was identified as E. coli. WGS analysis of 43 selected strong biofilm producers revealed that they harbored multiple ARGs, including ESBLs, PMQR and mcr-1. The gene clusters mrkABCDF and fimACDH encoding types 1 and 3 fimbriae, respectively, were identified among 43 (34.96%) and 7 (5.7%) of 123 strong biofilm isolates, respectively. These two operons were able to confer strong biofilm-forming ability to an E. coli weak-biofilm forming laboratory strain. Plasmid analysis revealed that mrk and fim operons were found to co-exist with ARGs and were primarily located on IncX1 and IncFII plasmids with similar backbones, respectively. mrkABCDF operons was present in all of 9457 Klebsiella pneumoniae using archived WGS data, and shared high homology to those on plasmids of 8 replicon types and chromosomes from 6 Enterobacteriaceae species from various origins and countries. In contrast, fimACDH operons was present in most of Enterobacter cloacae (62.15%), and shared high homology to those with only a small group of plasmids and Enterobacteriaceae species. This is the first comprehensive report of the prevalence, transmission and homology of plasmid-encoded type 1 and 3 fimbriae among the Enterobacteriaceae. Our findings indicated that plasmid-encoded mrkABCDF and fimACDH were major contributors to enhanced biofilm formation among E. coli and these two operons, in particular mrk could be as a potential anti-biofilm target. IMPORTANCE Biofilms allow bacteria to tolerate disinfectants and antimicrobials, as well as mammalian host defenses, and are therefore difficult to treat clinically. Most research concerning biofilm-related infections is typically focused on chromosomal biofilm-associated factors, including types 1 and 3 fimbriae of biofilm-forming Enterobacterium. However, the transmission and homology of the mobile types 1 and 3 fimbriae among Enterobacteriaceae is largely unknown. The findings revealed that the plasmid-encoded type 3 fimbriae encoded by mrkABCDF and type 1 fimbriae encoded by fimACDH were major contributors to enhancing biofilm formation among strong biofilm E. coli from diseased food producing animals. Additionally, mrk operon with high homology at an amino acid sequence was present both on plasmids of various replicon types and on chromosomes from diverse Enterobacteriaceae species from numerous origins and countries. These findings provide important information on the transmission of the mobile types 1 and 3 fimbriae among Enterobacteriaceae, indicating a potential antibiofilm target.
Collapse
|
4
|
Mitra SD, Irshad P, Anusree M, Rekha I, Shailaja S, Suresh J, Aishwarya G, Shrestha S, Shome BR. Whole genome global insight of antibiotic resistance gene repertoire and virulome of high - risk multidrug-resistant Uropathogenic Escherichiacoli. Microb Pathog 2021; 161:105256. [PMID: 34695556 DOI: 10.1016/j.micpath.2021.105256] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/06/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022]
Abstract
Elucidation of genetic determinants via whole genome sequence (WGS) analyses can help understand the high risk multidrug-resistant (MDR) Uropathogenic Escherichia coli (UPEC) associated with urinary tract infections (UTI) and its evasion strategies from treatment. We investigated the WGS of 30 UPEC strains from UTI samples across the world (2016-2019) and found 25 UPEC strains carrying 2-23 antibiotic resistance genes (ARGs) scattered across 1-3 plasmids per strain. Different ARGs (blaTEM, blaCTXM, blaNDM, blaOXA, blaCMY) encoding extended-spectrum beta-lactamases (TEM, CTXM, CMY) and carbapenemases (NDM, OXA) were found in 24/30, ARGs encoding aminoglycoside modifying enzymes (AAC, APH, AAD) variants in 23/30, trimethoprim ARGs (dfrA17, dfrA12, dfrA5, dfrB4 variants) encoding dihydrofolate reductase in 19/30 and sulfonamide ARGs (sul1, sul2, sul3) encoding dihydropteroate synthase and macrolide ARGs (mph1) encoding macrolide 2' phosphotransferase in 15/30 UPEC strains. Collectively the ARGs were distributed in different combinations in 40 plasmids across UPEC strains with 20 plasmids displaying co-occurrence of multiple ARGs conferring resistance to beta lactam, aminoglycoside, sulfonamide, trimethoprim and macrolide antibiotics. These resistance plasmids belonged to seven incompatibility groups (IncF, IncI, IncC, IncH, IncN, IncB and Col), with IncFI and IncFII being the predominant resistance plasmids. Additionally, we observed co-occurrence of specific mutation pattern in quinolone resistance determining region (QRDR) viz., DNA gyrase (gyrA: S83L, D87N), and topoisomerase IV (parC: S80I, E84V; parE: I529L) in 18/30 strains. The strains also harbored diverse virulence genes, such as fimH, gad, iss, iha, ireA, iroN, cnf1 and san. Multilocus sequence typing (MLST) reconfirmed ST131(n = 10) as the predominant global high-risk clonal strain causing UTI. In summary, our findings contribute to better understand the plasmid mediated ARGs and its encoded enzymes that may contribute in antibiotic inactivation/modification or alteration in the antibiotic target site in high risk MDR hypervirulent UPEC strains causing UTI. The study reinforces the need to characterize and design appropriate inhibitors to counterattack different enzymes and devise strategies to curtail resistance plasmid.
Collapse
Affiliation(s)
- Susweta Das Mitra
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India.
| | - Pir Irshad
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - M Anusree
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - Injeti Rekha
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - S Shailaja
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - Janshi Suresh
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - G Aishwarya
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - Smeeta Shrestha
- Department of Biological Sciences, School of Basic & Applied Sciences, Dayananda Sagar University, Bangalore, 560078, India
| | - Bibek Ranjan Shome
- ICAR- National Institute of Veterinary Epidemiology & Disease Informatics, Bangalore, India
| |
Collapse
|
5
|
Zangane Matin F, Rezatofighi SE, Roayaei Ardakani M, Akhoond MR, Mahmoodi F. Virulence characterization and clonal analysis of uropathogenic Escherichia coli metallo-beta-lactamase-producing isolates. Ann Clin Microbiol Antimicrob 2021; 20:50. [PMID: 34344363 PMCID: PMC8336094 DOI: 10.1186/s12941-021-00457-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Background Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract infection (UTI); however, treatment of UTI has been challenging due to increased antimicrobial resistance (AMR). One of the most important types of AMR is carbapenem resistance (CR). CR bacteria are known as an important threat to global public health today. Class B metallo-beta-lactamases (MBLs) are one of the major factors for resistance against carbapenems. We aimed to investigate the characteristics of UPEC isolates producing MBL. Methods A cross-sectional study was conducted from October 2018 to December 2019 in Ahvaz; Iran. UPEC isolates were identified by biochemical and molecular methods. Metallo-beta-lactamase-producing isolates were detected using modified carbapenem inactivation method (mCIM) and EDTA-CIM (eCIM) tests. MBL genes, phylogenetic group, and virulence genes profile of carbapenem resistant isolates were determined. Conjugation assay and plasmid profiling were conducted to evaluate the ability of transferring of CR to other E. coli isolates. Clonal similarity of isolates were assessed using Enterobacterial intergenic repetitive element sequence (ERIC)-PCR. Results Among 406 UPEC isolates, 12 (2.95%) carbapenem-resistant were detected of which 11 were phenotypically MBL-producing strains. Four isolates were resistant to all investigated antimicrobial agents and were considered possible pandrug-resistant (PDR). blaNDM, blaOXA-48, blaIMP-1, and blaIMP-2 genes were found in 9, 5, 1, and 1 isolates, respectively. Among 30 virulence genes investigated, the traT, fyuA followed by fimH, and iutA with the frequency of 8 (66.7%), 8 (66.7%), 7 (58.3%), and 7 (58.3%) were the most identified genes, respectively. Siderophore production was the main virulence trait among carbapenem-resistant UPEC isolates. Except for two, all other isolates showed weak to moderate virulence index. In all recovered isolates, CR was readily transmitted via plasmids to other isolates during conjugation experiments. Conclusion MBL and carbapenemase genes, especially blaNDM and blaOXA-48 are spreading rapidly among bacteria, which can be a threat to global public health. Therefore monitoring the emergence and dissemination of new AMR is necessary to continuously refine guidelines for empiric antimicrobial therapy. Understanding the mechanisms of resistance and virulence in this group of bacteria can play an effective role in providing new therapeutic methods.
Collapse
Affiliation(s)
- Fatemeh Zangane Matin
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| | - Seyedeh Elham Rezatofighi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran.
| | - Mohammad Roayaei Ardakani
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| | - Mohammad Reza Akhoond
- Mathematical Sciences and Computer Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, 6135743135, Ahvaz, Iran
| |
Collapse
|
6
|
Antibiotic Resistance of Uropathogens Isolated from Patients Hospitalized in District Hospital in Central Poland in 2020. Antibiotics (Basel) 2021; 10:antibiotics10040447. [PMID: 33923389 PMCID: PMC8071495 DOI: 10.3390/antibiotics10040447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine antibiotic resistance patterns and the prevalence of uropathogenes causing urinary tract infections (UTIs) in patients hospitalized in January–June 2020 in central Poland. Antimicrobial susceptibility testing was performed using the disk-diffusion method. Escherichia coli (52.2%), Klebsiella pneumoniae (13.7%), Enterococcus faecalis (9.3%), E. faecium (6.2%), and Proteus mirabilis (4,3%) were most commonly isolated from urine samples. E. coli was significantly more frequent in women (58.6%) (p = 0.0089) and in the age group 0–18, while K. pneumoniae was more frequent in men (24.4%) (p = 0.0119) and in individuals aged 40–60 and >60. Gram-negative species showed resistance to ampicillin. K. pneumoniae were resistant to amoxicillin plus clavulanic acid (75.0%), piperacillin plus tazobactam (76.2%), cefotaxime (76.2%), cefuroxime (81.0%), ciprofloxacin (81.0%), and trimethoprim plus sulphamethoxazole (81.0%). Carbapenems were effective against all E. coli and P. mirabilis. Some K. pneumoniae (13.6%) produced metallo-β-lactamases (MBLs). E. coli (22.6%), K. pneumoniae (81.8%), and all E. faecium were multidrug-resistant (MDR). Some E. coli (26.2%), K. pneumoniae (63.6%), and P. mirabilis (14.3%) isolates produced extended-spectrum beta-lactamases (ESBL). Vancomycin-resistant E. faecium was also found. This study showed that the possibilities of UTIs therapy using available antibiotics become limited due to the increasing number of antibiotic-resistant uropathogens.
Collapse
|
7
|
Ghosh A, Bandyopadhyay D, Koley S, Mukherjee M. Uropathogenic Escherichia coli in India-an Overview on Recent Research Advancements and Trends. Appl Biochem Biotechnol 2021; 193:2267-2296. [PMID: 33595784 DOI: 10.1007/s12010-021-03521-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/27/2021] [Indexed: 11/24/2022]
Abstract
Urinary tract infection (UTI), a prevalent disease in India, also ranks among the most common infections in developing countries. The rapid emergence of antibiotic-resistant uropathogenic Escherichia coli (UPECs), the leading etiologic agent of UTI, in the last few years, led to an upsurge in the health care cost. This caused a considerable economic burden, especially in low-middle income country, India. This review aimed to provide an explicit overview of the recent advancements in E. coli-mediated UTI in India by incorporation of valuable information from the works published in PubMed and Google Scholar in the last six years (2015 to August, 2020). The literature survey demonstrated UPECs as the most predominant uropathogen in India, especially among females, causing both asymptomatic bacteriuria (ABU) and symptomatic UTI. An overall increasing national trend in resistance to penicillins, cephalosporins, aminoglycosides, fluoroquinolones, and sulfonamides was perceived irrespective of ABU and symptomatic UPECs during the aforementioned study period. High incidences of multidrug resistance, extended-spectrum β-lactamases, metallo β-lactamases, and AmpCs in UPECs were reported. Notable information on the pathogenic profiles, phylogroups, pathogenicity islands, and evidence of pathoadaptive FimH mutations was described. Alternative therapeutics and potential drug targets against UPECs were also reconnoitered. Therefore, the nationwide widespread occurrences of highly virulent MDR UPEC together with the limited availability of therapeutics highlighted the urgent need for promotion and invention of alternative therapeutics, search for which had already been started. Moreover, investigation of several mechanisms of UPEC infection and the search for potential drug targets might help to design newer therapeutics.
Collapse
Affiliation(s)
- Arunita Ghosh
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Debojyoty Bandyopadhyay
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Snehashis Koley
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India
| | - Mandira Mukherjee
- Department of Biochemistry and Medical Biotechnology, School of Tropical Medicine, 108, C.R. Avenue, Kolkata, 700073, India.
| |
Collapse
|
8
|
Mahmoodi F, Rezatofighi SE, Akhoond MR. Antimicrobial resistance and metallo-beta-lactamase producing among commensal Escherichia coli isolates from healthy children of Khuzestan and Fars provinces; Iran. BMC Microbiol 2020; 20:366. [PMID: 33256594 PMCID: PMC7708168 DOI: 10.1186/s12866-020-02051-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Background The emergence of metallo-β-lactamase (MBL)-producing isolates is alarming since they carry mobile genetic elements with great ability to spread; therefore, early detection of these isolates, particularly their reservoir, is crucial to prevent their inter- and intra-care setting dissemination and establish suitable antimicrobial therapies. The current study was designed to evaluate the frequency of antimicrobial resistance (AMR), MBL producers and identification of MBL resistance genes in Escherichia coli strains isolated from fecal samples of the healthy children under 3 years old. A total of 412 fecal E. coli isolates were collected from October 2017 to December 2018. The study population included healthy infants and children aged < 3 years who did not exhibit symptoms of any diseases, especially gastrointestinal diseases. E. coli isolates were assessed to determine the pattern of AMR. E. coli isolates were assessed to determine the pattern of AMR, the production of extended spectrum β-lactamase (ESBL) and MBL by phenotypic methods. Carbapenem-resistant isolates were investigated for the presence of MBL and carbapenemase genes, plasmid profiling, and the ability of conjugation. Results In sum, AMR, multi-drug resistance (MDR) and ESBL production were observed in more than 54.9, 36.2 and 11.7% of commensal E. coli isolates, respectively. Out of six isolates resistant to imipenem and meropenem, four isolates were phenotypically detected as MBL producers. Two and one E. coli strains carried the blaNDM-1 and blaVIM-2 genes, respectively and were able to transmit imipenem resistance through conjugation. Conclusion Our findings showed that children not exposed to antibiotics can be colonized by E. coli isolates resistant to the commonly used antimicrobial compounds and can be a good indicator for the occurrence and prevalence of AMR in the community. These bacteria can act as a potential reservoir of AMR genes including MBL genes of pathogenic bacteria and lead to the dissemination of resistance mechanisms to other bacteria.
Collapse
Affiliation(s)
- Fahimeh Mahmoodi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran
| | - Seyedeh Elham Rezatofighi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Postal code: 6135743135, Iran.
| | - Mohammad Reza Akhoond
- Mathematical Sciences and Computer Faculty, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|