1
|
Zhang J, Xu L, Zhang K, Yue J, Dong K, Luo Q, Yu W, Huang Y. Synergistic effect of fosfomycin and colistin against KPC-producing Klebsiella pneumoniae: pharmacokinetics-pharmacodynamics combined with transcriptomic approach. BMC Microbiol 2024; 24:430. [PMID: 39455935 PMCID: PMC11515340 DOI: 10.1186/s12866-024-03581-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
OBJECTIVES The aim of this study was to identify the synergistic effect and mechanisms of fosfomycin (FM) combined with colistin (COL) against KPC-producing Klebsiella pneumoniae (KPC-Kp). METHODS The bactericidal effects, induced drug resistance and cytotoxicity of FM combined with COL were evaluated by time-kill assays and mutation rate test. Time-kill assays and transcriptomics analysis were used to further clarify the mechanism of FM combined with COL. The bacteria were taken from different points in time-kill assays, reactive oxygen species (ROS), nitric oxide and redox related enzymes were detected. The mechanism of synergistic bactericidal action was analyzed by transcriptome. RESULTS The bactericidal effect of FM combined with COL was better than that of monotherapy. The mutation frequency of FM alone at low dose (8 mg/L) was higher than that at high dose (64 mg/L). COL induced resistant isolates resulted in FM and COL resistance, while FM alone or combined with COL only resulted in FM resistance. The survival rate of Thp-1 cells in FM combined with COL against K. pneumoniae was higher than that of monotherapy. The intracellular nitric oxide, activities of total superoxide dismutase and catalase were increased along with the increase of FM concentration against KPC-Kp. FM combined with COL induced ROS accumulation and antioxidant capacity increase. Transcriptome analysis showed FM combined with COL could regulate the levels of soxRS and oxidative phosphorylation, in order to clear ROS and repair damage. In addition, FM combined with COL could result in synergetic bactericidal efficacy by inhibiting ribosomal transcription. CONCLUSIONS FM combined with COL mediated synergistic bactericidal effect by regulating ROS accumulation and inhibiting ribosomal protein transcription, resulting in lower resistance and cytotoxicity.
Collapse
Affiliation(s)
- Jiajie Zhang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liqian Xu
- Department of Geriatrics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | | - Qixia Luo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yicheng Huang
- Center for General Practice Medicine, Department of Infectious Diseases, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
2
|
Aseev LV, Koledinskaya LS, Boni IV. Extraribosomal Functions of Bacterial Ribosomal Proteins-An Update, 2023. Int J Mol Sci 2024; 25:2957. [PMID: 38474204 DOI: 10.3390/ijms25052957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.
Collapse
Affiliation(s)
- Leonid V Aseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | | | - Irina V Boni
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| |
Collapse
|
3
|
Li B, Jeon MK, Li X, Yan T. Differential impacts of salinity on antibiotic resistance genes during cattle manure stockpiling are linked to mobility potentials revealed by metagenomic sequencing. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130590. [PMID: 37055994 DOI: 10.1016/j.jhazmat.2022.130590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/09/2022] [Accepted: 12/08/2022] [Indexed: 06/19/2023]
Abstract
Livestock manure is an important source of antibiotic resistance genes (ARGs), and its salinity level can change during stockpiling. To understand how the salinity changes affect the fate of ARGs, cattle manure was adjusted of salinity and stockpiled in laboratory microcosms at low (0.3% salt), moderate (3.0%) and high salinity levels (10.0%) for 44 days. Amongst the five ARGs (tetO, blaTEM, sul1, tetM, and ermB) and the first-class integrase (intI1) monitored by qPCR, the relative abundance of tetO and blaTEM exhibited no clear trend in response to salinity levels, while that of sul1, tetM, ermB and intI1 showed clear downward trends over time at the lower salinity levels (0.3% and 3%) but not at the high salinity level (10%). Metagenomic contig construction of cattle manure samples revealed that sul1, tetM and ermB genes were more likely to associate with mobile genetic elements (MGEs) than tetO and blaTEM, suggesting that their slower decay at higher salinity levels was either caused by horizontal gene transfer or co-selection of ARGs and osmotic stress resistant determinants. Further analysis of metagenomic contigs showed that osmotic stress resistance can also be located on MGEs or in conjunction with ARGs.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Tao Yan
- Department of Civil and Environmental Engineering, Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States; Water Resources Research Center, University of Hawaii at Manoa, Honolulu, HI 96822, United States.
| |
Collapse
|
4
|
Choi E, Huh A, Hwang J. Novel rRNA transcriptional activity of NhaR revealed by its growth recovery for the bipA-deleted Escherichia coli at low temperature. Front Mol Biosci 2023; 10:1175889. [PMID: 37152896 PMCID: PMC10157491 DOI: 10.3389/fmolb.2023.1175889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
The BipA protein is a universally conserved GTPase in bacterial species and is structurally similar to translational GTPases. Despite its wide distribution, BipA is dispensable for growth under optimal growth conditions but is required under stress conditions. In particular, bipA-deleted cells (ESC19) have been shown to display a variety of phenotypic changes in ribosome assembly, capsule production, lipopolysaccharide (LPS) synthesis, biofilm formation, and motility at low temperature, suggesting its global regulatory roles in cold adaptation. Here, through genomic library screening, we found a suppressor clone containing nhaR, which encodes a Na+-responsive LysR-type transcriptional regulator and whose gene product partially restored the growth of strain ESC19 at 20°C. The suppressed cells showed slightly reduced capsule production and improved biofilm-forming ability at 20°C, whereas the defects in the LPS core and swimming motility were not restored but aggravated by overexpression of nhaR. Notably, the overexpression partially alleviated the defects in 50S ribosomal subunit assembly and rRNA processing of ESC19 cells by enhancing the overall transcription of rRNA. Electrophoretic mobility shift assay revealed the association of NhaR with the promoter of seven rrn operons, suggesting that NhaR directly regulates rRNA transcription in ESC19 at 20°C. The suppressive effects of NhaR on ribosomes, capsules, and LPS were dependent on its DNA-binding activity, implying that NhaR might be a transcriptional factor involved in regulating these genes at 20°C. Furthermore, we found that BipA may be involved in adaptation to salt stress, designating BipA as a global stress-responsive regulator, as the deletion of bipA led to growth defects at 37°C and high Na+ concentrations without ribosomal defects.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, Republic of Korea
- Microbiological Resource Research Institute, Pusan National University, Busan, Republic of Korea
- *Correspondence: Jihwan Hwang,
| |
Collapse
|
5
|
Naganathan A, Culver GM. Interdependency and Redundancy Add Complexity and Resilience to Biogenesis of Bacterial Ribosomes. Annu Rev Microbiol 2022; 76:193-210. [PMID: 35609945 DOI: 10.1146/annurev-micro-041020-121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pace and efficiency of ribosomal subunit production directly impact the fitness of bacteria. Biogenesis demands more than just the union of ribosomal components, including RNA and proteins, to form this functional ribonucleoprotein particle. Extra-ribosomal protein factors play a fundamental role in the efficiency and efficacy of ribosomal subunit biogenesis. A paucity of data on intermediate steps, multiple and overlapping pathways, and the puzzling number of functions that extra-ribosomal proteins appear to play in vivo make unraveling the formation of this macromolecular assemblage difficult. In this review, we outline with examples the multinodal landscape of factor-assisted mechanisms that influence ribosome synthesis in bacteria. We discuss in detail late-stage events that mediate correct ribosome formation and the transition to translation initiation and thereby ensure high-fidelity protein synthesis.
Collapse
Affiliation(s)
- Anusha Naganathan
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
| | - Gloria M Culver
- Department of Biology, University of Rochester, Rochester, New York, USA; ,
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York, USA
| |
Collapse
|
6
|
Choi E, Huh A, Oh C, Oh JI, Kang HY, Hwang J. Functional characterization of HigBA toxin-antitoxin system in an Arctic bacterium, Bosea sp. PAMC 26642. J Microbiol 2022; 60:192-206. [PMID: 35102526 DOI: 10.1007/s12275-022-1619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/02/2023]
Abstract
Toxin-antitoxin (TA) systems are growth-controlling genetic elements consisting of an intracellular toxin protein and its cognate antitoxin. TA systems have been spread among microbial genomes through horizontal gene transfer and are now prevalent in most bacterial and archaeal genomes. Under normal growth conditions, antitoxins tightly counteract the activity of the toxins. Upon stresses, antitoxins are inactivated, releasing activated toxins, which induce growth arrest or cell death. In this study, among nine functional TA modules in Bosea sp. PAMC 26642 living in Arctic lichen, we investigated the functionality of BoHigBA2. BohigBA2 is located close to a genomic island and adjacent to flagellar gene clusters. The expression of BohigB2 induced the inhibition of E. coli growth at 37°C, which was more manifest at 18°C, and this growth defect was reversed when BohigA2 was co-expressed, suggesting that this BoHigBA2 module might be an active TA module in Bosea sp. PAMC 26642. Live/dead staining and viable count analyses revealed that the BoHigB2 toxin had a bactericidal effect, causing cell death. Furthermore, we demonstrated that BoHigB2 possessed mRNA-specific ribonuclease activity on various mRNAs and cleaved only mRNAs being translated, which might impede overall translation and consequently lead to cell death. Our study provides the insight to understand the cold adaptation of Bosea sp. PAMC 26642 living in the Arctic.
Collapse
Affiliation(s)
- Eunsil Choi
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ahhyun Huh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Changmin Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeong-Il Oh
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea.,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea
| | - Jihwan Hwang
- Department of Microbiology, Pusan National University, Busan, 46241, Republic of Korea. .,Microbiological Resource Research Institute, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
7
|
Xu B, Liu L, Song G. Functions and Regulation of Translation Elongation Factors. Front Mol Biosci 2022; 8:816398. [PMID: 35127825 PMCID: PMC8807479 DOI: 10.3389/fmolb.2021.816398] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
Translation elongation is a key step of protein synthesis, during which the nascent polypeptide chain extends by one amino acid residue during one elongation cycle. More and more data revealed that the elongation is a key regulatory node for translational control in health and disease. During elongation, elongation factor Tu (EF-Tu, eEF1A in eukaryotes) is used to deliver aminoacyl-tRNA (aa-tRNA) to the A-site of the ribosome, and elongation factor G (EF-G, EF2 in eukaryotes and archaea) is used to facilitate the translocation of the tRNA2-mRNA complex on the ribosome. Other elongation factors, such as EF-Ts/eEF1B, EF-P/eIF5A, EF4, eEF3, SelB/EFsec, TetO/Tet(M), RelA and BipA, have been found to affect the overall rate of elongation. Here, we made a systematic review on the canonical and non-canonical functions and regulation of these elongation factors. In particular, we discussed the close link between translational factors and human diseases, and clarified how post-translational modifications control the activity of translational factors in tumors.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College, Shanxi Medical University, Fenyang, China
| | - Guangtao Song
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Benjin Xu, ; Guangtao Song,
| |
Collapse
|
8
|
del Peso Santos T, Alvarez L, Sit B, Irazoki O, Blake J, Warner BR, Warr AR, Bala A, Benes V, Waldor MK, Fredrick K, Cava F. BipA exerts temperature-dependent translational control of biofilm-associated colony morphology in Vibrio cholerae. eLife 2021; 10:e60607. [PMID: 33588990 PMCID: PMC7886329 DOI: 10.7554/elife.60607] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Adaptation to shifting temperatures is crucial for the survival of the bacterial pathogen Vibrio cholerae. Here, we show that colony rugosity, a biofilm-associated phenotype, is regulated by temperature in V. cholerae strains that naturally lack the master biofilm transcriptional regulator HapR. Using transposon-insertion mutagenesis, we found the V. cholerae ortholog of BipA, a conserved ribosome-associated GTPase, is critical for this temperature-dependent phenomenon. Proteomic analyses revealed that loss of BipA alters the synthesis of >300 proteins in V. cholerae at 22°C, increasing the production of biofilm-related proteins including the key transcriptional activators VpsR and VpsT, as well as proteins important for diverse cellular processes. At low temperatures, BipA protein levels increase and are required for optimal ribosome assembly in V. cholerae, suggesting that control of BipA abundance is a mechanism by which bacteria can remodel their proteomes. Our study reveals a remarkable new facet of V. cholerae's complex biofilm regulatory network.
Collapse
Affiliation(s)
- Teresa del Peso Santos
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Laura Alvarez
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Brandon Sit
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Oihane Irazoki
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Jonathon Blake
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Benjamin R Warner
- Department of Microbiology, The Ohio State UniversityColumbus, OHUnited States
- Center for RNA Biology, The Ohio State UniversityColumbus, OHUnited States
| | - Alyson R Warr
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Anju Bala
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL)HeidelbergGermany
| | - Matthew K Waldor
- Howard Hughes Medical Institute, Brigham and Women's Hospital Division of Infectious Diseases and Harvard Medical School Department of Microbiology and ImmunobiologyBoston, MAUnited States
| | - Kurt Fredrick
- Department of Microbiology, The Ohio State UniversityColumbus, OHUnited States
- Center for RNA Biology, The Ohio State UniversityColumbus, OHUnited States
| | - Felipe Cava
- The laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå UniversityUmeåSweden
| |
Collapse
|
9
|
Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol 2021; 59:186-201. [DOI: 10.1007/s12275-021-0523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
|
10
|
Choi E, Jeon H, Oh C, Hwang J. Elucidation of a Novel Role of YebC in Surface Polysaccharides Regulation of Escherichia coli bipA-Deletion. Front Microbiol 2020; 11:597515. [PMID: 33240252 PMCID: PMC7682190 DOI: 10.3389/fmicb.2020.597515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
The BipA (BPI-inducible protein A) protein is ubiquitously conserved in various bacterial species and belongs to the translational GTPase family. Interestingly, the function of Escherichia coli BipA is not essential for cell growth under normal growth conditions. However, cultivation of bipA-deleted cells at 20°C leads to cold-sensitive growth defect and several phenotypic changes in ribosome assembly, capsule production, and motility, suggesting its global regulatory roles. Previously, our genomic library screening revealed that the overexpressed ribosomal protein (r-protein) L20 partially suppressed cold-sensitive growth defect by resolving the ribosomal abnormality in bipA-deleted cells at low temperature. Here, we explored another genomic library clone containing yebC, which encodes a predicted transcriptional factor that is not directly associated with ribosome biogenesis. Interestingly, overexpression of yebC in bipA-deleted cells diminished capsule synthesis and partially restored lipopolysaccharide (LPS) core maturation at a low temperature without resolving defects in ribosome assembly or motility, indicating that YebC may be specifically involved in the regulation of exopolysaccharide and LPS core synthesis. In this study, we collectively investigated the impacts of bipA-deletion on E. coli capsule, LPS, biofilm formation, and motility and revealed novel roles of YebC in extracellular polysaccharide production and LPS core synthesis at low temperature using this mutant strain. Furthermore, our findings suggest that ribosomal defects as well as increased capsule synthesis, and changes in LPS composition may contribute independently to the cold-sensitivity of bipA-deleted cells, implying multiple regulatory roles of BipA.
Collapse
Affiliation(s)
- Eunsil Choi
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| | - Hyerin Jeon
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Changmin Oh
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea
| | - Jihwan Hwang
- Microbiological Resource Research Institute, Pusan National University, Busan, South Korea.,Department of Microbiology, Pusan National University, Busan, South Korea
| |
Collapse
|
11
|
Hör J, Di Giorgio S, Gerovac M, Venturini E, Förstner KU, Vogel J. Grad-seq shines light on unrecognized RNA and protein complexes in the model bacterium Escherichia coli. Nucleic Acids Res 2020; 48:9301-9319. [PMID: 32813020 PMCID: PMC7498339 DOI: 10.1093/nar/gkaa676] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/29/2020] [Accepted: 08/14/2020] [Indexed: 12/21/2022] Open
Abstract
Stable protein complexes, including those formed with RNA, are major building blocks of every living cell. Escherichia coli has been the leading bacterial organism with respect to global protein-protein networks. Yet, there has been no global census of RNA/protein complexes in this model species of microbiology. Here, we performed Grad-seq to establish an RNA/protein complexome, reconstructing sedimentation profiles in a glycerol gradient for ∼85% of all E. coli transcripts and ∼49% of the proteins. These include the majority of small noncoding RNAs (sRNAs) detectable in this bacterium as well as the general sRNA-binding proteins, CsrA, Hfq and ProQ. In presenting use cases for utilization of these RNA and protein maps, we show that a stable association of RyeG with 30S ribosomes gives this seemingly noncoding RNA of prophage origin away as an mRNA of a toxic small protein. Similarly, we show that the broadly conserved uncharacterized protein YggL is a 50S subunit factor in assembled 70S ribosomes. Overall, this study crucially extends our knowledge about the cellular interactome of the primary model bacterium E. coli through providing global RNA/protein complexome information and should facilitate functional discovery in this and related species.
Collapse
Affiliation(s)
- Jens Hör
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Silvia Di Giorgio
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany
| | - Milan Gerovac
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Elisa Venturini
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Konrad U Förstner
- ZB MED - Information Centre for Life Sciences, D-50931 Cologne, Germany.,TH Köln, Faculty of Information Science and Communication Studies, D-50678 Cologne, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology, University of Würzburg, D-97080 Würzburg, Germany.,Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), D-97080 Würzburg, Germany
| |
Collapse
|
12
|
Functional Analysis of BipA in E. coli Reveals the Natural Plasticity of 50S Subunit Assembly. J Mol Biol 2020; 432:5259-5272. [PMID: 32710983 DOI: 10.1016/j.jmb.2020.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BipA is a conserved translational GTPase of bacteria recently implicated in ribosome biogenesis. Here we show that Escherichia coli ΔbipA cells grown at suboptimal temperature accumulate immature large subunit particles missing several proteins. These include L17 and L17-dependent binders, suggesting that structural block 3 of the subunit folds late in the assembly process. Parallel analysis of the control strain revealed accumulation of nearly identical intermediates, albeit at lower levels, suggesting qualitatively similar routes of assembly. This came as a surprise, because earlier analogous studies of wild-type E. coli showed early binding of L17. Further investigation showed that the main path of 50S assembly differs depending on conditions of growth. Either supplementation of the media with lysine and arginine or suboptimal temperature appears to delay block 3 folding, demonstrating the flexible nature of the assembly process. We also show that the variant BipA-H78A fails to rescue phenotypes of the ΔbipA strain, indicating a critical role for GTP hydrolysis in BipA function. In fact, BipA-H78A confers a dominant negative phenotype in wild-type cells. Controlled production of BipA-H78A causes accumulation of 70S monosomes at the expense of polysomes, suggesting that the growth defect stems from a shutdown of translation.
Collapse
|
13
|
Younkin AD, Gregory ST, O'Connor M. Alterations in the ribosomal protein bL12 of E. coli affecting the initiation, elongation and termination of protein synthesis. Biochimie 2020; 175:173-180. [PMID: 32569619 DOI: 10.1016/j.biochi.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 11/27/2022]
Abstract
In bacteria, ribosomal protein bL12 forms the prominent stalk structure on the ribosome and binds to multiple, distinct translational GTPase factors during the sequential steps of translation. Using a genetic selection in E. coli for altered readthrough of UGA stop codons, we have isolated seven different mutations affecting the C-terminal domain of the protein that forms the interaction surface with translation factors. Analysis of these altered proteins, along with four additional alterations previously shown to affect IF2-ribosome interactions, indicates that multiple steps of translation are affected, consistent with bL12's interaction with multiple factors. Surprisingly, deletion of the release factor GTPase, RF3, has relatively little effect on bL12-promoted stop codon readthrough, suggesting that other steps in termination are also influenced by bL12.
Collapse
Affiliation(s)
- Adam D Younkin
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Steven T Gregory
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, 02881, USA
| | - Michael O'Connor
- School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA.
| |
Collapse
|
14
|
Identification of Substrates of Cytoplasmic Peptidyl-Prolyl Cis/Trans Isomerases and Their Collective Essentiality in Escherichia Coli. Int J Mol Sci 2020; 21:ijms21124212. [PMID: 32545723 PMCID: PMC7353009 DOI: 10.3390/ijms21124212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/07/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
Protein folding often requires molecular chaperones and folding catalysts, such as peptidyl-prolyl cis/trans isomerases (PPIs). The Escherichia coli cytoplasm contains six well-known PPIs, although a requirement of their PPIase activity, the identity of their substrates and relative enzymatic contribution is unknown. Thus, strains lacking all periplasmic and one of the cytoplasmic PPIs were constructed. Measurement of their PPIase activity revealed that PpiB is the major source of PPIase activity in the cytoplasm. Furthermore, viable Δ6ppi strains could be constructed only on minimal medium in the temperature range of 30-37 °C, but not on rich medium. To address the molecular basis of essentiality of PPIs, proteins that aggregate in their absence were identified. Next, wild-type and putative active site variants of FkpB, FklB, PpiB and PpiC were purified and in pull-down experiments substrates specific to each of these PPIs identified, revealing an overlap of some substrates. Substrates of PpiC were validated by immunoprecipitations using extracts from wild-type and PpiC-H81A strains carrying a 3xFLAG-tag appended to the C-terminal end of the ppiC gene on the chromosome. Using isothermal titration calorimetry, RpoE, RseA, S2, and AhpC were established as FkpB substrates and PpiC's PPIase activity was shown to be required for interaction with AhpC.
Collapse
|