1
|
Fu Y, Chen S, Wang X, Wang L, Wang Z, Cheng Y, Liu Y, Zhang L, Liu S, Kang J, Li C. Insights into the Correlation between Microbial Community Succession and Pericarp Degradation during Pepper ( Piper nigrum L.) Peeling Process via Retting. Foods 2024; 13:1615. [PMID: 38890844 PMCID: PMC11172340 DOI: 10.3390/foods13111615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
White pepper, used both as a seasoning in people's daily diets and as a medicinal herb, is typically produced by removing the pericarp of green pepper through the retting process. However, the mechanism of the retting process for peeling remains unclear. Therefore, this study aimed to investigate the changes in physicochemical factors, microbial community succession effects, and metabolites of the pepper pericarp during the pepper peeling process. The findings indicated that pre-treatment involving physical friction before the retting process effectively reduced the production time of white pepper. During the retting process, the pectinase activity increased, leading to a decrease in the pectin content in the pepper pericarp. There was a significant correlation observed between the changes in pH, pectin content, and peeling rate and the Shannon diversity index of bacteria and fungi. Prevotella, Lactococcus, and Candida were the dominant microbial genera during the retting. The functional predictions suggested that the monosaccharides degraded from the pepper pericarp could have been utilized by microbes through sugar metabolism pathways. Metabolomic analysis showed that the metabolic pathways of carbohydrates and amino acids were the main pathways altered during the pepper peeling process. The verification experiment demonstrated that the degradation of pectin into galacturonic acid by polygalacturonase was identified as the key enzyme in shortening the pepper peeling time. The structure of the pepper pericarp collapsed after losing the support of pectin, as revealed by scanning electron microscopy. These results suggest that the decomposition of the pepper pericarp was driven by key microbiota. The succession of microbial communities was influenced by the metabolites of the pepper pericarp during retting. These findings provide new insights into the retting process and serve as an important reference for the industrial production of white pepper.
Collapse
Affiliation(s)
- Yuting Fu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Shuai Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Xinjun Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Lu Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Zexin Wang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Yanfei Cheng
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Yuyi Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
| | - Lin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Sixin Liu
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Jiamu Kang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| | - Congfa Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; (Y.F.); (X.W.); (Y.L.)
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
- Key Laboratory of Tropical Agricultural Products Processing Technology of Haikou, Haikou 570228, China
| |
Collapse
|
2
|
Pragya K, Sreya P, Vighnesh L, Mahima D, Sushmita M, Sasikala C, Venkata Ramana C. Phylogenomic analysis of metagenome-assembled genomes indicates new taxa in the order Spirochaetales and proposal of Thalassospirochaeta sargassi gen. nov. sp. nov. from seaweeds. Syst Appl Microbiol 2024; 47:126502. [PMID: 38458136 DOI: 10.1016/j.syapm.2024.126502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/16/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Six metagenome-assembled genomes (JB008Ts, JB007, JB015, JB003, JB004, and JB002) belonging to the order Spirochaetales were generated from seaweed samples collected from the Gulf of Mannar, India. The binned genomes JB008Ts and JB007 shared highest 16S rRNA gene identity of 94.9 % and 92.2-93.4 %, respectively with uncultivated Spirochaetaceae family members, and < 90 % identity with Marispirochaeta aestuari JC444T. While, the bin JB015 showed 99.1 % identity with Pleomorphochaeta naphthae SEBR 4209T. The phylogenomic and 16S rRNA gene-based phylogenetic analysis of the binned genomes JB007 and JB008Ts confirmed that these members belong to the family Spirochaetaceae and bins JB015, JB002, JB003, and JB004 belong to the genus Pleomorphochaeta within the family Sphaerochaetaceae. The AAI values of the binned genomes JB007 and JB008Ts compared to other members of the Spirochaetaceae family were between 53.9- 56.8 % and 53.8-57.1 %, respectively. Furthermore, the comparison of ANI, dDDH, and POCP metrics of the binned genomes JB007 and JB008Ts, both among themselves and with the members of Spirochaetaceae, was also below the suggested thresholds for genera delineation. Consequently, the binned genome JB008Ts is proposed as a new genus according to the guidelines of code of nomenclature of prokaryotes described from sequence data (SeqCode) with the name Thalassospirochaeta sargassi gen. nov. sp. nov., in the family Spirochaetaceae while the bin JB007 could not be proposed as novel taxa due to low-quality estimates. The bin JB015 and its additional genomes form a distinct clade, but their taxonomic status remains ambiguous due to the absence of genomic evidence from other Pleomorphochaeta members.
Collapse
Affiliation(s)
- Kohli Pragya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Pannikurungottu Sreya
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Lakshmanan Vighnesh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Dhurka Mahima
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Mallick Sushmita
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Chintalapati Sasikala
- Bacterial Discovery Laboratory, Centre for Environment, IST, JNT University Hyderabad, Kukatpally, Hyderabad 500085, India.
| | - Chintalapati Venkata Ramana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| |
Collapse
|
3
|
Xiao Y, Sun L, Xin X, Xu L, Du S. Physicochemical characteristics and microbial community succession during oat silage prepared without or with Lactiplantibacillus plantarum or Lentilactobacillus buchneri. Microbiol Spectr 2023; 11:e0222823. [PMID: 37947518 PMCID: PMC10714795 DOI: 10.1128/spectrum.02228-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/07/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Ensiled whole-plant oats are an important feedstuff for ruminants in large parts of the world. Oat silage is rich in dietary fibers, minerals, vitamins, and phytochemicals beneficial to animal health. The fermentation of oat silage is a complex biochemical process that includes interactions between various microorganisms. The activity of many microbes in silage may cause an extensive breakdown of nutrition and lead to undesirable fermentation. Moreover, it is difficult to make high-quality oat silage because the number of epiphytic lactic acid bacterium microflora was lower than the requirement. Understanding the complex microbial community during the fermentation process and its relationship with community functions is therefore important in the context of developing improved fermentation biotechnology systems. These results suggested that the addition of Lactobacillus plantarum or Lactobacillus buchneri regulated the ensiling performance and microbial community in oat silage by shaping the metabolic pathways.
Collapse
Affiliation(s)
- Yanzi Xiao
- College of Agriculture and Forestry, Hulunbuir University, Hulunber, China
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Hulunber Grassland Ecosystem Observation and Research Station, Beijing, China
| | - Lin Sun
- Inner Mongolia Academy of Agricultural Science & Animal Husbandry, Hohhot, China
| | - Xiaoping Xin
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Hulunber Grassland Ecosystem Observation and Research Station, Beijing, China
| | - Lijun Xu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Hulunber Grassland Ecosystem Observation and Research Station, Beijing, China
| | - Shuai Du
- />Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
4
|
Gagnon JC, Beauregard-Tousignant S, Marcil JS, Lazar CS. Deep Isolated Aquifer Brines Harbor Atypical Halophilic Microbial Communities in Quebec, Canada. Genes (Basel) 2023; 14:1529. [PMID: 37628582 PMCID: PMC10454208 DOI: 10.3390/genes14081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The deep terrestrial subsurface, hundreds of meters to kilometers below the surface, is characterized by oligotrophic conditions, dark and often anoxic settings, with fluctuating pH, salinity, and water availability. Despite this, microbial populations are detected and active, contributing to biogeochemical cycles over geological time. Because it is extremely difficult to access the deep biosphere, little is known about the identity and metabolisms of these communities, although they likely possess unknown pathways and might interfere with deep waste deposits. Therefore, we analyzed rock and groundwater microbial communities from deep, isolated brine aquifers in two regions dating back to the Ordovician and Devonian, using amplicon and whole genome sequencing. We observed significant differences in diversity and community structure between both regions, suggesting an impact of site age and composition. The deep hypersaline groundwater did not contain typical halophilic bacteria, and genomes suggested pathways involved in protein and hydrocarbon degradation, and carbon fixation. We identified mainly one strategy to cope with osmotic stress: compatible solute uptake and biosynthesis. Finally, we detected many bacteriophage families, potentially indicating that bacteria are infected. However, we also found auxiliary metabolic genes in the viral genomes, probably conferring an advantage to the infected hosts.
Collapse
Affiliation(s)
- Jean-Christophe Gagnon
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
- Interuniversity Research Group in Limnology/Groupe de Recherche Interuniversitaire en Limnologie (GRIL), Montréal, QC H3C 3P8, Canada
| | - Samuel Beauregard-Tousignant
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| | - Jean-Sébastien Marcil
- Derena Geosciences, Quebec, QC G7A 3Y5, Canada;
- Ressources Utica Inc., Quebec, QC G1V 4M7, Canada
| | - Cassandre Sara Lazar
- Department of Biological Sciences, University of Québec at Montréal (UQAM), C.P. 8888, Succ. Centre-Ville, Montréal, QC H3C 3P8, Canada; (J.-C.G.); (S.B.-T.)
| |
Collapse
|
5
|
Plaza-Díaz J, Manzano M, Ruiz-Ojeda FJ, Giron MD, Salto R, López-Pedrosa JM, Santos-Fandila A, Garcia-Corcoles MT, Rueda R, Gil Á. Intake of slow-digesting carbohydrates is related to changes in the microbiome and its functional pathways in growing rats with obesity induced by diet. Front Nutr 2022; 9:992682. [PMID: 36532542 PMCID: PMC9748084 DOI: 10.3389/fnut.2022.992682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/02/2022] [Indexed: 08/17/2023] Open
Abstract
INTRODUCTION The main cause of insulin resistance in childhood is obesity, which contributes to future comorbidities as in adults. Although high-calorie diets and lack of exercise contribute to metabolic disease development, food quality rather than the quantity of macronutrients is more important than food density. The purpose of the present study was to examine the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on the composition of the gut microbiota and the profiles of the functional pathways in growing rats with obesity due to a high-fat diet (HFD). METHODS During the course of 4 weeks, rats growing on an HFD-containing carbohydrates with different digestive rates were fed either HFD-containing carbohydrates with a rapid digestion rate (OBE group) or HFD-containing carbohydrates with a slow digestion rate (OBE-ISR group). A non-obese group (NOB) was included as a reference, and rats were fed on a rodent standard diet (AIN93G). An analysis of gut microbiota was conducted using 16S rRNA-based metagenomics; a linear mixed-effects model (LMM) was used to determine changes in abundance between baseline and 4 weeks of treatment, and functional pathways were identified. Gut microbiota composition at bacterial diversity and relative abundance, at phylum and genus levels, and functional profiles were analyzed by integrating the Integrated Microbial Genomes (IMG) database. RESULTS The groups showed comparable gut microbiota at baseline. At the end of the treatment, animals from the ISR group exhibited differences at the phylum levels by decreasing the diversity of Fisher's index and Firmicutes (newly named as Bacillota), and increasing the Pielou's evenness and Bacteroidetes (newly named as Bacteroidota); at the genus level by increasing Alistipes, Bifidobacterium, Bacteroides, Butyricimonas, Lachnoclostridium, Flavonifractor, Ruminiclostridium 5, and Faecalibaculum and decreasing Muribaculum, Blautia, and Ruminiclostridium 9. Remarkably, relative abundances of genera Tyzzerella and Angelakisella were higher in the OBE group compared to NOB and OBE-ISR groups. In addition, some microbiota carbohydrate metabolism pathways such as glycolysis, glucuronic acid degradation, pentose phosphate pathway, methanogenesis, and fatty acid biosynthesis exhibited increased activity in the OBE-ISR group after the treatment. Higher levels of acetate and propionate were found in the feces of the ISR group compared with the NOB and OBE groups. CONCLUSION The results of this study demonstrate that replacing rapidly digestible carbohydrates with slowly digestible carbohydrates within an HFD improve the composition of the gut microbiota. Consequently, metabolic disturbances associated with obesity may be prevented.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
| | | | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- RG Adipocytes and Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center at Helmholtz Center Munich, Munich, Germany
| | - Maria D. Giron
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
| | | | | | | | | | - Ángel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (ibs.Granada), Complejo Hospitalario Universitario de Granada, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Biomedical Research Centre, University of Granada, Granada, Spain
- CIBER Physiopathology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Du S, You S, Jiang X, Li Y, Wang R, Ge G, Jia Y. Evaluating the fermentation characteristics, bacterial community, and predicted functional profiles of native grass ensiled with different additives. Front Microbiol 2022; 13:1025536. [PMID: 36329844 PMCID: PMC9623271 DOI: 10.3389/fmicb.2022.1025536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/20/2022] Open
Abstract
Bioaugmentation of native grass ensiling with Lactobacillus plantarum or Lactobacillus buchneri or Pediococcus pentosaceus on the ensiling performance and bacterial community was investigated after 30 days of the fermentation process. The native grass was inoculated with distilled water, Lactobacillus plantarum, Lactobacillus plantarum, and Lactobacillus buchneri, and Lactobacillus plantarum, Lactobacillus buchneri, and Pediococcus pentosaceus as the CON treatment, T1 treatment, T2 treatment, and T3 treatment, respectively. The addition of lactic acid bacteria was added at a total of 1 × 106 colony-forming unit/g of fresh weight. As expected, the markedly (p < 0.05) lower water-soluble carbohydrate content was tested in the T2 and T3 treatments compared to the CON and T1 treatments. Compared to the CON and T1 treatment, significantly (p < 0.05) higher crude protein content, and lower acid detergent fiber and neutral detergent fiber contents were found in the T2 and T3 treatments. Compared to the CON treatment, the pH significantly (p < 0.05) decreased in the lactic acid bacteria (LAB) inoculated silage, and the lowest pH was measured in the T3 treatment. Similarly, significantly higher lactic acid and acetic acid contents were also found in the T3 treatment compared to those in other treatments. After 30 days of ensiling, the Shannon and Chao1 indexes in silages decreased compared to that in the fresh materials (FMs). The principal coordinate analysis indicated that both FM and silage were distinctly separated in each treatment with no interactions on the confidence ellipse (R = 0.8933, p = 0.001). At the phylum level, the dominant phylum was shifted from Proteobacteria to Firmicutes after the fermentation process. Interestingly, Weissella dominated the fermentation in the CON treatment and Lactobacillus dominated the fermentation in all inoculated LAB silages at the genus level. Results of functional prediction analyses showed that the metabolism of amino acid, cofactors, and vitamins, and membrane transport was reduced, while the metabolism of nucleotide and majority carbohydrates was increased after ensiling. The complex LAB (Lactobacillus plantarum, Lactobacillus buchneri, and Pediococcus pentosaceus) exhibited the potential possibility to decrease pH and enhance the relative abundance of LAB in response to obtaining high-quality silage by the synergistic effects. These results suggested that the complex LAB could improve the ensiling performance of native grass silage, and lay a theoretical basis for inoculant application in native grass.
Collapse
Affiliation(s)
- Shuai Du
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Key Laboratory of Molecular Nutrition, Ministry of Education, Key Laboratory of Animal Nutrition and Feed, Ministry of Agriculture and Rural Affairs, Key Laboratory of Animal Nutrition and Feed Science of Zhejiang Province, Institute of Feed Science, Zhejiang University, Hangzhou, China
- *Correspondence: Shuai Du
| | - Sihan You
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaowei Jiang
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Yuyu Li
- Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Ruifeng Wang
- Inner Mongolia Yihelvjin Agricultural Development Co., Ltd., Chifeng, China
| | - Gentu Ge
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Yushan Jia
- Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
- Yushan Jia
| |
Collapse
|
7
|
Zeng J, Sheng F, Hu X, Huang Z, Tian X, Wu Z. Nutrition promotion of brewer's spent grain by symbiotic fermentation adding Bacillus velezensis and Levilactobacillus brevis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Anastasiou R, Kazou M, Georgalaki M, Aktypis A, Zoumpopoulou G, Tsakalidou E. Omics Approaches to Assess Flavor Development in Cheese. Foods 2022; 11:188. [PMID: 35053920 PMCID: PMC8775153 DOI: 10.3390/foods11020188] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/27/2022] Open
Abstract
Cheese is characterized by a rich and complex microbiota that plays a vital role during both production and ripening, contributing significantly to the safety, quality, and sensory characteristics of the final product. In this context, it is vital to explore the microbiota composition and understand its dynamics and evolution during cheese manufacturing and ripening. Application of high-throughput DNA sequencing technologies have facilitated the more accurate identification of the cheese microbiome, detailed study of its potential functionality, and its contribution to the development of specific organoleptic properties. These technologies include amplicon sequencing, whole-metagenome shotgun sequencing, metatranscriptomics, and, most recently, metabolomics. In recent years, however, the application of multiple meta-omics approaches along with data integration analysis, which was enabled by advanced computational and bioinformatics tools, paved the way to better comprehension of the cheese ripening process, revealing significant associations between the cheese microbiota and metabolites, as well as their impact on cheese flavor and quality.
Collapse
Affiliation(s)
- Rania Anastasiou
- Laboratory of Dairy Research, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece; (M.K.); (M.G.); (A.A.); (G.Z.); (E.T.)
| | | | | | | | | | | |
Collapse
|
9
|
Furusawa G, Azami NA, Teh AH. Genes for degradation and utilization of uronic acid-containing polysaccharides of a marine bacterium Catenovulum sp. CCB-QB4. PeerJ 2021; 9:e10929. [PMID: 33732545 PMCID: PMC7953866 DOI: 10.7717/peerj.10929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Oligosaccharides from polysaccharides containing uronic acids are known to have many useful bioactivities. Thus, polysaccharide lyases (PLs) and glycoside hydrolases (GHs) involved in producing the oligosaccharides have attracted interest in both medical and industrial settings. The numerous polysaccharide lyases and glycoside hydrolases involved in producing the oligosaccharides were isolated from soil and marine microorganisms. Our previous report demonstrated that an agar-degrading bacterium, Catenovulum sp. CCB-QB4, isolated from a coastal area of Penang, Malaysia, possessed 183 glycoside hydrolases and 43 polysaccharide lyases in the genome. We expected that the strain might degrade and use uronic acid-containing polysaccharides as a carbon source, indicating that the strain has a potential for a source of novel genes for degrading the polysaccharides. METHODS To confirm the expectation, the QB4 cells were cultured in artificial seawater media with uronic acid-containing polysaccharides, namely alginate, pectin (and saturated galacturonate), ulvan, and gellan gum, and the growth was observed. The genes involved in degradation and utilization of uronic acid-containing polysaccharides were explored in the QB4 genome using CAZy analysis and BlastP analysis. RESULTS The QB4 cells were capable of using these polysaccharides as a carbon source, and especially, the cells exhibited a robust growth in the presence of alginate. 28 PLs and 22 GHs related to the degradation of these polysaccharides were found in the QB4 genome based on the CAZy database. Eleven polysaccharide lyases and 16 glycoside hydrolases contained lipobox motif, indicating that these enzymes play an important role in degrading the polysaccharides. Fourteen of 28 polysaccharide lyases were classified into ulvan lyase, and the QB4 genome possessed the most abundant ulvan lyase genes in the CAZy database. Besides, genes involved in uronic acid metabolisms were also present in the genome. These results were consistent with the cell growth. In the pectin metabolic pathway, the strain had genes for three different pathways. However, the growth experiment using saturated galacturonate exhibited that the strain can only use the pathway related to unsaturated galacturonate.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Nor Azura Azami
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
10
|
Jeong D, Park H, Jang BK, Ju Y, Shin MH, Oh EJ, Lee EJ, Kim SR. Recent advances in the biological valorization of citrus peel waste into fuels and chemicals. BIORESOURCE TECHNOLOGY 2021; 323:124603. [PMID: 33406467 DOI: 10.1016/j.biortech.2020.124603] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
In the quest to reduce global food loss and waste, fruit processing wastes, particularly citrus peel waste (CPW), have emerged as a promising and sustainable option for biorefinery without competing with human foods and animal feeds. CPW is largely produced and, as recent studies suggest, has the industrial potential of biological valorization into fuels and chemicals. In this review, the promising aspects of CPW as an alternative biomass were highlighted, focusing on its low lignin content. In addition, specific technical difficulties in fermenting CPW are described, highlighting that citrus peel is high in pectin that consist of non-fermentable sugars, mainly galacturonic acid. Last, recent advances in the metabolic engineering of yeast and other microbial strains that ferment CPW-derived sugars to produce value-added products, such as ethanol and mucic acid, are summarized. For industrially viable CPW-based biorefinery, more studies are needed to improve fermentation efficiency and to diversify product profiles.
Collapse
Affiliation(s)
- Deokyeol Jeong
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Heeyoung Park
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Byeong-Kwan Jang
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - YeBin Ju
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea
| | - Min Hye Shin
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, South Korea
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Eun Jung Lee
- Department of Chemical Engineering, School of Applied Chemical Engineering, Kyungpook National University, Daegu, South Korea
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
11
|
Saboo K, Shamsaddini A, Iyer MV, Hu C, Fagan A, Gavis EA, White MB, Fuchs M, Heuman DM, Sikaroodi M, Iyer RK, Gillevet PM, Bajaj JS. Sex is associated with differences in gut microbial composition and function in hepatic encephalopathy. J Hepatol 2021; 74:80-88. [PMID: 32679299 PMCID: PMC7749850 DOI: 10.1016/j.jhep.2020.06.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Altered microbiota can affect the gut-liver-brain axis in cirrhosis and hepatic encephalopathy (HE), but the impact of sex on these changes is unclear. We aimed to determine differences in fecal microbiota composition/functionality between men and women with cirrhosis and HE on differing treatments. METHODS Cross-sectional stool microbiome composition (16s rRNA sequencing) and microbial functional analyses were performed in men and women with cirrhosis, and controls. Patients with HE on rifaximin+lactulose (HE-Rif), patients with HE on lactulose only (HE-Lac) and those with cirrhosis without HE (No-HE) were compared to controls using random forest classifier. Men and women were also compared. RESULTS A total of 761 individuals were included, 619 with cirrhosis (466 men, 153 women) and 142 controls (92 men, 50 women). Men were older and more frequently used proton pump inhibitors (PPIs), but model for end-stage liver disease score, No-HE (n = 319), HE-lac (n = 130) and HE-Rif (n = 170) proportions were similar. PPI/age-adjusted AUC of differentiation between controls vs. all cirrhosis, and controls vs. No-HE were higher within women than men, but the adjusted AUC for No-HE vs. HE-Rif was higher in men. Control vs. HE-Rif differentiation was similar across sexes. Men vs. women were different in all cirrhosis, No-HE and HE-Lac but not HE-Rif on PERMANOVA and AUC analyses. Autochthonous taxa decreased and pathobionts increased with disease progression regardless of sex. In men, Lactobacillaceae were higher in HE-Lac but decreased in HE-Rif, along with Veillonellaceae. Pathways related to glutamate and aromatic compound degradation were higher in men at all stages. Degradation of androstenedione, an estrogenic precursor, was lower in men vs. women in HE-Rif, likely enhancing feminization. CONCLUSIONS There are differences in gut microbial function and composition between men and women with cirrhosis, which could be implicated in differential responses to HE therapies. Further studies linking these differences to sex-specific outcomes are needed. LAY SUMMARY Patients with cirrhosis develop changes in their brain function, and men often develop feminization with disease progression. However, the interaction between sex, microbiota and disease severity is unclear. We found that as disease progressed in men, their microbial composition began to approach that observed in women, with changes in specific microbes that are associated with male hormone metabolism.
Collapse
Affiliation(s)
- Krishnakant Saboo
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Mihir V Iyer
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Chang Hu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew Fagan
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Edith A Gavis
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Melanie B White
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Michael Fuchs
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | - Douglas M Heuman
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA
| | | | - Ravishankar K Iyer
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA, USA.
| |
Collapse
|
12
|
Engineering cofactor supply and NADH-dependent D-galacturonic acid reductases for redox-balanced production of L-galactonate in Saccharomyces cerevisiae. Sci Rep 2020; 10:19021. [PMID: 33149263 PMCID: PMC7642425 DOI: 10.1038/s41598-020-75926-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
D-Galacturonic acid (GalA) is the major constituent of pectin-rich biomass, an abundant and underutilized agricultural byproduct. By one reductive step catalyzed by GalA reductases, GalA is converted to the polyhydroxy acid L-galactonate (GalOA), the first intermediate of the fungal GalA catabolic pathway, which also has interesting properties for potential applications as an additive to nutrients and cosmetics. Previous attempts to establish the production of GalOA or the full GalA catabolic pathway in Saccharomyces cerevisiae proved challenging, presumably due to the inefficient supply of NADPH, the preferred cofactor of GalA reductases. Here, we tested this hypothesis by coupling the reduction of GalA to the oxidation of the sugar alcohol sorbitol that has a higher reduction state compared to glucose and thereby yields the necessary redox cofactors. By choosing a suitable sorbitol dehydrogenase, we designed yeast strains in which the sorbitol metabolism yields a "surplus" of either NADPH or NADH. By biotransformation experiments in controlled bioreactors, we demonstrate a nearly complete conversion of consumed GalA into GalOA and a highly efficient utilization of the co-substrate sorbitol in providing NADPH. Furthermore, we performed structure-guided mutagenesis of GalA reductases to change their cofactor preference from NADPH towards NADH and demonstrated their functionality by the production of GalOA in combination with the NADH-yielding sorbitol metabolism. Moreover, the engineered enzymes enabled a doubling of GalOA yields when glucose was used as a co-substrate. This significantly expands the possibilities for metabolic engineering of GalOA production and valorization of pectin-rich biomass in general.
Collapse
|