1
|
Naik L, Patel S, Kumar A, Ghosh A, Mishra A, Das M, Nayak DK, Saha S, Mishra A, Singh R, Behura A, Dhiman R. 4-(Benzyloxy)phenol-induced p53 exhibits antimycobacterial response triggering phagosome-lysosome fusion through ROS-dependent intracellular Ca 2+ pathway in THP-1 cells. Microbiol Res 2024; 282:127664. [PMID: 38422860 DOI: 10.1016/j.micres.2024.127664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Drug-resistant tuberculosis (TB) outbreak has emerged as a global public health crisis. Therefore, new and innovative therapeutic options like host-directed therapies (HDTs) through novel modulators are urgently required to overcome the challenges associated with TB. In the present study, we have investigated the anti-mycobacterial effect of 4-(Benzyloxy)phenol. Cell-viability assay asserted that 50 μM of 4-(Benzyloxy)phenol was not cytotoxic to phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. It was observed that 4-(Benzyloxy)phenol activates p53 expression by hindering its association with KDM1A. Increased ROS, intracellular Ca2+ and phagosome-lysosome fusion, were also observed upon 4-(Benzyloxy)phenol treatment. 4-(Benzyloxy)phenol mediated killing of intracellular mycobacteria was abrogated in the presence of specific inhibitors of ROS, Ca2+ and phagosome-lysosome fusion like NAC, BAPTA-AM, and W7, respectively. We further demonstrate that 4-(Benzyloxy)phenol mediated enhanced ROS production is mediated by acetylation of p53. Blocking of p53 acetylation by Pifithrin-α (PFT- α) enhanced intracellular mycobacterial growth by blocking the mycobactericidal effect of 4-(Benzyloxy)phenol. Altogether, the results showed that 4-(Benzyloxy)phenol executed its anti-mycobacterial effect by modulating p53-mediated ROS production to regulate phagosome-lysosome fusion through Ca2+ production.
Collapse
Affiliation(s)
- Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Abhirupa Ghosh
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India
| | - Sudipto Saha
- Divison of Bioinformatics, Bose Institute Kolkata, West Bengal 700054, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad-Gurugram Expressway, 3rd Milestone, PO Box # 4, Faridabad, Haryana 121001, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, Odisha 769008, India.
| |
Collapse
|
2
|
Singh P, Kumar A, Sharma P, Chugh S, Kumar A, Sharma N, Gupta S, Singh M, Kidwai S, Sankar J, Taneja N, Kumar Y, Dhiman R, Mahajan D, Singh R. Identification and optimization of pyridine carboxamide-based scaffold as a drug lead for Mycobacterium tuberculosis. Antimicrob Agents Chemother 2024; 68:e0076623. [PMID: 38193667 PMCID: PMC10848774 DOI: 10.1128/aac.00766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/10/2023] [Indexed: 01/10/2024] Open
Abstract
New drugs with novel mechanisms of action are urgently needed to tackle the issue of drug-resistant tuberculosis. Here, we have performed phenotypic screening using the Pathogen Box library obtained from the Medicines for Malaria Venture against Mycobacterium tuberculosis in vitro. We have identified a pyridine carboxamide derivative, MMV687254, as a promising hit. This molecule is specifically active against M. tuberculosis and Mycobacterium bovis Bacillus Calmette-Guérin (M. bovis BCG) but inactive against Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Escherichia coli pathogens. We demonstrate that MMV687254 inhibits M. tuberculosis growth in liquid cultures in a bacteriostatic manner. Surprisingly, MMV687254 was as active as isoniazid in macrophages and inhibited M. tuberculosis growth in a bactericidal manner. Mechanistic studies revealed that MMV687254 is a prodrug and that its anti-mycobacterial activity requires AmiC-dependent hydrolysis. We further demonstrate that MMV687254 inhibits M. tuberculosis growth in macrophages by inducing autophagy. In the present study, we have also carried out a detailed structure-activity relationship study and identified a promising novel lead candidate. The identified novel series of compounds also showed activity against drug-resistant M. bovis BCG and M. tuberculosis clinical strains. Finally, we demonstrate that in contrast to MMV687254, the lead molecule was able to inhibit M. tuberculosis growth in a chronic mouse model of infection. Taken together, we have identified a novel lead molecule with a dual mechanism of action that can be further optimized to design more potent anti-tubercular agents.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Arun Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Pankaj Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ashish Kumar
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Nidhi Sharma
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sonu Gupta
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saqib Kidwai
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Jishnu Sankar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Neha Taneja
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Yashwant Kumar
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Rohan Dhiman
- Department of Life Science, Laboratory of Mycobacterial Immunology, National Institute of Technology, Rourkela, India
| | - Dinesh Mahajan
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Ramandeep Singh
- Translational Health Sciences and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
3
|
Jana T, Sarkar D, Ganguli D, Mukherjee SK, Mandal RS, Das S. ABDpred: Prediction of active antimicrobial compounds using supervised machine learning techniques. Indian J Med Res 2024; 159:78-90. [PMID: 38345040 PMCID: PMC10954100 DOI: 10.4103/ijmr.ijmr_1832_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND OBJECTIVES Discovery of new antibiotics is the need of the hour to treat infectious diseases. An ever-increasing repertoire of multidrug-resistant pathogens poses an imminent threat to human lives across the globe. However, the low success rate of the existing approaches and technologies for antibiotic discovery remains a major bottleneck. In silico methods like machine learning (ML) deem more promising to meet the above challenges compared with the conventional experimental approaches. The goal of this study was to create ML models that may be used to successfully predict new antimicrobial compounds. METHODS In this article, we employed eight different ML algorithms namely, extreme gradient boosting, random forest, gradient boosting classifier, deep neural network, support vector machine, multilayer perceptron, decision tree, and logistic regression. These models were trained using a dataset comprising 312 antibiotic drugs and a negative set of 936 non-antibiotic drugs in a five-fold cross validation approach. RESULTS The top four ML classifiers (extreme gradient boosting, random forest, gradient boosting classifier and deep neural network) were able to achieve an accuracy of 80 per cent and above during the evaluation of testing and blind datasets. INTERPRETATION CONCLUSIONS We aggregated the top performing four models through a soft-voting technique to develop an ensemble-based ML method and incorporated it into a freely accessible online prediction server named ABDpred ( http://clinicalmedicinessd.com.in/abdpred/ ).
Collapse
Affiliation(s)
- Tanmoy Jana
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Debasree Sarkar
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Debayan Ganguli
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Sandip Kumar Mukherjee
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rahul Shubhra Mandal
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Santasabuj Das
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
- ICMR-National Institute of Occupational Health, Ahmedabad, India
| |
Collapse
|
4
|
Ommi O, Naiyaz Ahmad M, Gajula SNR, Wanjari P, Sau S, Agnivesh PK, Sahoo SK, Kalia NP, Sonti R, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Synthesis and pharmacological evaluation of 1,3-diaryl substituted pyrazole based (thio)urea derivatives as potent antimicrobial agents against multi-drug resistant Staphylococcus aureus and Mycobacterium tuberculosis. RSC Med Chem 2023; 14:1296-1308. [PMID: 37484564 PMCID: PMC10357928 DOI: 10.1039/d3md00079f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/08/2023] [Indexed: 07/25/2023] Open
Abstract
The urgent development of newer alternatives has been deemed a panacea for tackling emerging antimicrobial resistance effectively. Herein, we report the design, synthesis, and biological evaluation of 1,3-diaryl substituted pyrazole-based urea and thiourea derivatives as antimicrobial agents. Preliminary screening results revealed that compound 7a (3,4-dichlorophenyl derivative) exhibited potent activity against S. aureus (MIC = 0.25 μg mL-1) and compound 7j (2,4-difluorophenyl derivative) against Mycobacterium tuberculosis (MIC = 1 μg mL-1). Compounds 7a and 7j were non-toxic to Vero cells with a favorable selectivity index of 40 and 200, respectively, and demonstrated good microsomal stability. Compound 7a exhibited equipotent activity (MIC = 0.25 μg mL-1) against various multidrug-resistant strains of S. aureus, which include various strains of MRSA and VRSA, and elicited bacteriostatic properties. In an enzymatic assay, 7a effectively inhibited DNA gyrase supercoiling activity at a concentration of 8 times MIC. Further, molecular modeling studies suggested that compound 7a binds at the active site of DNA gyrase with good affinity.
Collapse
Affiliation(s)
- Ojaswitha Ommi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Mohammad Naiyaz Ahmad
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Parita Wanjari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Shashikanta Sau
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Puja Kumari Agnivesh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Santosh Kumar Sahoo
- Department of Pharmaceutical Chemistry, GITAM School of Pharmacy, GITAM University Visakhapatnam 530045 India
| | - Nitin Pal Kalia
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Srinivas Nanduri
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| | - Arunava Dasgupta
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sidharth Chopra
- Division of Molecular Microbiology and Immunology, CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road Lucknow 226031 UP India
- AcSIR: Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Venkata Madhavi Yaddanapudi
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER) Balanagar Hyderabad 500037 Telangana India
| |
Collapse
|
5
|
Kumar A, Naik L, Patel S, Das M, Nayak DK, Mishra A, Mishra A, Singh R, Behura A, Dhiman R. Ac-93,253 inhibits intracellular growth of mycobacteria in human macrophages by inducing apoptosis in mitochondrial-dependent manner. Biochim Biophys Acta Gen Subj 2023:130425. [PMID: 37423324 DOI: 10.1016/j.bbagen.2023.130425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/13/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Recent studies suggest that apoptosis in macrophages plays a significant role in host defence against intracellular pathogens like viruses, fungi, protozoan, and bacteria, including Mycobacterium tuberculosis (M. tb). It is still unclear if micromolecules inducing apoptosis could be an attractive approach to combat the intracellular burden of M. tb. Hence, the present study has investigated the anti-mycobacterial effect of apoptosis mediated through phenotypic screening of micromolecules. Through MTT and trypan blue exclusion assay, 0.5 μM of Ac-93,253 was found to be non-cytotoxic even after 72 h of treatment in phorbol 12-myristate 13-acetate (PMA) differentiated THP-1 (dTHP-1) cells. Significant regulation in the expression of various pro-apoptotic genes like Bcl-2, Bax, and Bad and the cleaved caspase 3 was observed upon treatment with a non-cytotoxic dose of Ac-93,253. Ac-93,253 treatment also leads to DNA fragmentation and increased phosphatidylserine accumulation in the plasma membrane's outer leaflet. Further, Ac-93,253 also effectively reduced the growth of mycobacteria in infected macrophages, Z-VAD-FMK a broad-range apoptosis inhibitor significantly brought back the mycobacterial growth in Ac-93,253 treated macrophages. These findings suggest apoptosis may be the probable effector response through which Ac-93,253 manifests its anti-mycobacterial property.
Collapse
Affiliation(s)
- Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3(rd) Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
6
|
Bhanot A, Lunge A, Kumar N, Kidwai S, Singh R, Sundriyal S, Agarwal N. Discovery of small molecule inhibitors of Mycobacterium tuberculosis ClpC1: SAR studies and antimycobacterial evaluation. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|
7
|
Singh P, Rawat S, Agrahari AK, Singh M, Chugh S, Gurcha S, Singh A, Abrahams K, Besra GS, Asthana S, Rawat DS, Singh R. NSC19723, a Thiacetazone-Like Benzaldehyde Thiosemicarbazone Improves the Efficacy of TB Drugs In Vitro and In Vivo. Microbiol Spectr 2022; 10:e0259222. [PMID: 36314972 PMCID: PMC9769743 DOI: 10.1128/spectrum.02592-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/31/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity and duration of tuberculosis (TB) treatment contributes to the emergence of drug resistant tuberculosis (DR-TB) and drug-associated side effects. Alternate chemotherapeutic agents are needed to shorten the time and improve efficacy of current treatment. In this study, we have assessed the antitubercular activity of NSC19723, a benzaldehyde thiosemicarbazone molecule. NSC19723 is structurally similar to thiacetazone (TAC), a second-line anti-TB drug used to treat individuals with DR-TB. NSC19723 displayed better MIC values than TAC against Mycobacterium tuberculosis and Mycobacterium bovis BCG. In our checkerboard experiments, NSC19723 displayed better profiles than TAC in combination with known first-line and recently approved drugs. Mechanistic studies revealed that NSC19723 inhibits mycolic acid biosynthesis by targeting the HadABC complex. Computational studies revealed that the binding pocket of HadAB is similarly occupied by NSC19723 and TAC. NSC19723 also improved the efficacy of isoniazid in macrophages and mouse models of infection. Cumulatively, we have identified a benzaldehyde thiosemicarbazone scaffold that improved the activity of TB drugs in liquid cultures, macrophages, and mice. IMPORTANCE Mycobacterium tuberculosis, the causative agent of TB is among the leading causes of death among infectious diseases in humans. This situation has worsened due to the failure of BCG vaccines and the increased number of cases with HIV-TB coinfections and drug-resistant strains. Another challenge in the field is the lengthy duration of therapy for drug-sensitive and -resistant TB. Here, we have deciphered the mechanism of action of NSC19723, benzaldehyde thiosemicarbazone. We show that NSC19723 targets HadABC complex and inhibits mycolic acid biosynthesis. We also show that NSC19723 enhances the activity of known drugs in liquid cultures, macrophages, and mice. We have also performed molecular docking studies to identify the interacting residues of HadAB with NSC19723. Taken together, we demonstrate that NSC19723, a benzaldehyde thiosemicarbazone, has better antitubercular activity than thiacetazone.
Collapse
Affiliation(s)
- Padam Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Srishti Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| | - Ashish Kumar Agrahari
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Manisha Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Sudagar Gurcha
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Albel Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Katherine Abrahams
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S. Besra
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Diwan S. Rawat
- Department of Chemistry, University of Delhi, Delhi, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
8
|
Novel fluorophenyl tethered thiazole and chalcone analogues as potential anti-tubercular agents: Design, synthesis, biological and in silico evaluations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
10
|
Hosseini Nasab N, Han Y, Hassan Shah F, Vanjare BD, Kim SJ. Synthesis, biological evaluation, migratory inhibition and docking study of Indenopyrazolones as potential anticancer agents. Chem Biodivers 2022; 19:e202200399. [PMID: 35977918 DOI: 10.1002/cbdv.202200399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022]
Abstract
Some bioactive derivatives of indeno[1,2- c ]pyrazolones were synthesized through the reaction of phenylhydrazine, different aldehydes and indan-1,2,3-trione at room temperature in acetonitrile. Analytical and spectroscopic studies have confirmed the structural characteristics of the synthesized compounds. In addition, the target compounds were screened for the in-vitro antiproliferative properties against the B16F10 melanoma cancer cell line by the standard MTT assay. The effect on inflammatory marker cyclooxygenase 2 and matrix metalloproteinase 2, 9 was also checked to determine the anti-inflammatory and anti-cell migratory properties of these compounds. The final compounds were also tested for their tyrosinase inhibitory activity. Among all compounds, screened for anticancer activity, three compounds 4e , 4f and 4h reduced the cell proliferation significantly comparable to that of the positive standard drug erlotinib (IC 50 = 418.9±1.54 µM) with IC 50 values ranging from 20.72-29.35 µM. The compounds 4c-4h decreased the COX-2 expression whereas the MMP 2, 9 expressions were significantly reduced by 4a , 4b and 4h . This was confirmed by molecular docking studies, as 4e , 4f and 4h displayed good interactions with the active site of BRAF protein. The compounds 4b , 4f and 4h exhibited moderate tyrosinase inhibition effect as compared to α-MSH. Collectively, compound 4h can be considered as a candidate for further optimization in the development of anticancer therapies based on the results of biological investigations in this study.
Collapse
Affiliation(s)
- Narges Hosseini Nasab
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Yohan Han
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Fahad Hassan Shah
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Balasaheb D Vanjare
- Kongju University: Kongju National University, Biological Sciences, 56 GongjuDaehak-Ro, Gongju, KOREA, REPUBLIC OF
| | - Song Ja Kim
- Kongju National University, Biological Science, 56 GongjuDaehak-Ro, 32588, Gongju, KOREA, REPUBLIC OF
| |
Collapse
|
11
|
Shah PT, Tufail M, Wu C, Xing L. THP-1 cell line model for tuberculosis: A platform for in vitro macrophage manipulation. Tuberculosis (Edinb) 2022; 136:102243. [PMID: 35963145 DOI: 10.1016/j.tube.2022.102243] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/20/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
Abstract
Macrophages are large mononuclear phagocytic cells that play a vital role in the immune response. They are present in all body tissues with extremely heterogeneous and plastic phenotypes that adapt to the organs and tissues in which they live and respond in the first-line against invading microorganisms. Tuberculosis (TB) is caused by the pathogenic bacteria Mycobacterium tuberculosis (Mtb), which is among the top 10 global infectious agents and the leading cause of mortality, ranking above human immunodeficiency virus (HIV), as a single infectious agent. Macrophages, upon Mtb infection, not only phagocytose the bacteria and present the antigens to T-cells, but also react rapidly by developing antimycobacterial immune response depending highly on the production of cytokines. However, Mtb is also capable of intracellular survival in instances of sub-optimal activation of macrophages. Hence, several systems have been established to evaluate the Mtb-macrophage interaction, where the THP-1 monocytes have been developed as an attractive model for in vitro polarized monocyte-derived macrophages. This model is extensively used for Mtb as well as other intracellular bacterial studies. Herein, we have summarized the updated implications of the THP-1 model for TB-related studies and discussed the pros and cons compared to other cell models of TB.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Muhammad Tufail
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, Shanxi province, China; The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, 92 Wucheng Road, Taiyuan, 030006, China; Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, 92 Wucheng Road, Taiyuan, 030006, China.
| |
Collapse
|
12
|
Khurana H, Srivastava M, Chaudhary D, Gosain TP, Kumari R, Bean AC, Chugh S, Maiti TK, Stephens CE, Asthana S, Singh R. Identification of diphenyl furan derivatives via high throughput and computational studies as ArgA inhibitors of Mycobacterium tuberculosis. Int J Biol Macromol 2021; 193:1845-1858. [PMID: 34762917 DOI: 10.1016/j.ijbiomac.2021.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/20/2021] [Accepted: 11/03/2021] [Indexed: 12/13/2022]
Abstract
Microbial amino acid biosynthetic pathways are underexploited for the development of anti-bacterial agents. N-acetyl glutamate synthase (ArgA) catalyses the first committed step in L-arginine biosynthesis and is essential for M. tuberculosis growth. Here, we have purified and optimized assay conditions for the acetylation of l-glutamine by ArgA. Using the optimized conditions, high throughput screening was performed to identify ArgA inhibitors. We identified 2,5-Bis (2-chloro-4-guanidinophenyl) furan, a dicationic diaryl furan derivatives, as ArgA inhibitor, with a MIC99 values of 1.56 μM against M. tuberculosis. The diaryl furan derivative displayed bactericidal killing against both M. bovis BCG and M. tuberculosis. Inhibition of ArgA by the lead compound resulted in transcriptional reprogramming and accumulation of reactive oxygen species. The lead compound and its derivatives showed micromolar binding with ArgA as observed in surface plasmon resonance and tryptophan quenching experiments. Computational and dynamic analysis revealed that these scaffolds share similar binding site residues with L-arginine, however, with slight variations in their interaction pattern. Partial restoration of growth upon supplementation of liquid cultures with either L-arginine or N-acetyl cysteine suggests a multi-target killing mechanism for the lead compound. Taken together, we have identified small molecule inhibitors against ArgA enzyme from M. tuberculosis.
Collapse
Affiliation(s)
- Harleen Khurana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Mitul Srivastava
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Deepika Chaudhary
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India; Manipal academy of higher education, Manipal, Karnataka 576104. India
| | - Tannu Priya Gosain
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Raniki Kumari
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Andrew C Bean
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA
| | - Saurabh Chugh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Tushar Kanti Maiti
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India
| | - Chad E Stephens
- Department of Chemistry and Physics, Augusta University, 2500 Walton Way, Augusta, GA 30904, USA.
| | - Shailendra Asthana
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| | - Ramandeep Singh
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana 121001, India.
| |
Collapse
|
13
|
Behura A, Das M, Kumar A, Naik L, Mishra A, Manna D, Patel S, Mishra A, Singh R, Dhiman R. ESAT-6 impedes IL-18 mediated phagosome lysosome fusion via microRNA-30a upon Calcimycin treatment in mycobacteria infected macrophages. Int Immunopharmacol 2021; 101:108319. [PMID: 34740079 DOI: 10.1016/j.intimp.2021.108319] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/05/2021] [Accepted: 10/25/2021] [Indexed: 01/18/2023]
Abstract
The weaponry possessed by Mycobacterium tuberculosis (M. tb) in the form of immunodominant antigens hijack the host immune system to give a survival advantage to this intracellular fiend, but the mechanism of this control is not entirely known. Since we have previously reported the mechanism of autophagy inhibition by early secreted antigenic target 6 kDa (ESAT-6) through microRNA (miR)-30a-3p in Calcimycin treated differentiated THP-1 (dTHP-1) cells, the present study was undertaken to deduce the effect of miR-30a on the immunomodulatory profile of ESAT-6 treated cells and the mechanism involved thereof, if any. Initially, the effect of recombinant ESAT-6 (rESAT-6) on the immunomodulatory profile in Calcimycin-treated phorbol 12-myristate 13-acetate (PMA) dTHP-1 cells was checked. Later, transfection studies using miR-30a-3p inhibitor or -5p mimic highlighted the contrary roles of different arms of the same miRNA in regulating IL-18 response by ESAT-6 in dTHP-1 cells after Calcimycin treatment. By using either IL-18 neutralizing antibody or inhibitors of phosphoinositide 3-kinase (PI3K)/NF-κB/phagosome-lysosome fusion in the miRNA-30a transfected background, IL-18 mediated signaling and intracellular killing of mycobacteria was reversed in the presence of ESAT-6. Overall, the results of this study conclusively prove the contrary roles of miR-30a-3p and miR-30a-5p in regulating IL-18 signaling by ESAT-6 in dTHP-1 cells upon Calcimycin treatment that affected phagosome-lysosome fusion and intracellular survival of mycobacteria.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
14
|
Draft genome sequencing and functional annotation and characterization of biofilm-producing bacterium Bacillus novalis PD1 isolated from rhizospheric soil. Antonie van Leeuwenhoek 2021; 114:1977-1989. [PMID: 34537868 DOI: 10.1007/s10482-021-01655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Biofilm forming bacterium Bacillus novalis PD1 was isolated from the rhizospheric soil of a paddy field. B. novalis PD1 is a Gram-positive, facultatively anaerobic, motile, slightly curved, round-ended, and spore-forming bacteria. The isolate B. novalis PD1 shares 98.45% similarity with B. novalis KB27B. B. vireti LMG21834 and B. drentensis NBRC 102,427 are the closest phylogenetic neighbours for B. novalis PD1. The draft genome RAST annotation showed a linear chromosome with 4,569,088 bp, encoding 6139 coding sequences, 70 transfer RNA (tRNA), and 11 ribosomal RNA (rRNA) genes. The genomic annotation of biofilm forming B. novalis PD1(> 3.6@OD595nm) showed the presence of exopolysaccharide-forming genes (ALG, PSL, and PEL) as well as other biofilm-related genes (comER, Spo0A, codY, sinR, TasA, sipW, degS, and degU). Antibiotic inactivation gene clusters (ANT (6)-I, APH (3')-I, CatA15/A16 family), efflux pumps conferring antibiotic resistance genes (BceA, BceB, MdtABC-OMF, MdtABC-TolC, and MexCD-OprJ), and secondary metabolites linked to phenazine, terpene, and beta lactone gene clusters are part of the genome.
Collapse
|
15
|
Adikesavalu H, Gopalaswamy R, Kumar A, Ranganathan UD, Shanmugam S. Autophagy Induction as a Host-Directed Therapeutic Strategy against Mycobacterium tuberculosis Infection. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:522. [PMID: 34070995 PMCID: PMC8224563 DOI: 10.3390/medicina57060522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/15/2021] [Accepted: 05/21/2021] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB), a bacterialinfectious disease caused by Mycobacterium tuberculosis (M.tb), which causes significant mortality in humans worldwide. Current treatment regimen involve the administration of multiple antibiotics over the course of several months that contributes to patient non-compliance leading to relapse and the development of drug-resistant M.tb (MDR and XDR) strains. Together, these facts highlight the need for the development of shorter TB treatment regimens. Host-directed therapy (HDT) is a new and emerging concept that aims to augment host immune response using drugs/compounds with or without adjunct antibiotics against M.tb infection. Autophagy is a natural catabolic mechanism of the cell that involves delivering the cytosolic constituents to the lysosomes for degradation and recycling the components; thereby maintaining the cellular and energy homoeostasis of a cell. However, over the past decade, an improved understanding of the role of autophagy in immunity has led to autophagy activation by using drugs or agents. This autophagy manipulation may represent a promising host-directed therapeutic strategy for human TB. However, current clinical knowledge on implementing autophagy activation by drugs or agents, as a stand-alone HDT or as an adjunct with antibiotics to treat human TB is insufficient. In recent years, many reports on high-throughput drug screening and measurement of autophagic flux by fluorescence, high-content microscopy, flow cytometry, microplate reader and immunoblotting have been published for the discovery of drugs that modulate autophagy. In this review, we discuss the commonly used chemical screening approaches in mammalian cells for the discovery of autophagy activating drugs against M.tbinfection. We also summarize the various autophagy-activating agents, both pre-clinical candidates and compounds approved for advanced clinical investigation during mycobacterial infection. Finally, we discuss the opportunities and challenges in using autophagy activation as HDT strategy to improve TB outcome and shorten treatment regimen.
Collapse
Affiliation(s)
- Harresh Adikesavalu
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Radha Gopalaswamy
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Ashok Kumar
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| | - Uma Devi Ranganathan
- Department of Immunology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India;
| | - Sivakumar Shanmugam
- Department of Bacteriology, ICMR-National Institute for Research in Tuberculosis, Chetpet, Chennai 600031, India; (H.A.); (R.G.); (A.K.)
| |
Collapse
|
16
|
Silwal P, Paik S, Kim JK, Yoshimori T, Jo EK. Regulatory Mechanisms of Autophagy-Targeted Antimicrobial Therapeutics Against Mycobacterial Infection. Front Cell Infect Microbiol 2021; 11:633360. [PMID: 33828998 PMCID: PMC8019938 DOI: 10.3389/fcimb.2021.633360] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/08/2021] [Indexed: 01/25/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen causing human tuberculosis, an infectious disease that still remains as a global health problem. Autophagy, a lysosomal degradative process, has emerged as a critical pathway to restrict intracellular Mtb growth through enhancement of phagosomal maturation. Indeed, several autophagy-modulating agents show promise as host-directed therapeutics for Mtb infection. In this Review, we discuss recent progress in our understanding the molecular mechanisms underlying the action of autophagy-modulating agents to overcome the immune escape strategies mediated by Mtb. The factors and pathways that govern such mechanisms include adenosine 5'-monophosphate-activated protein kinase, Akt/mammalian TOR kinase, Wnt signaling, transcription factor EB, cathelicidins, inflammation, endoplasmic reticulum stress, and autophagy-related genes. A further understanding of these mechanisms will facilitate the development of host-directed therapies against tuberculosis as well as infections with other intracellular bacteria targeted by autophagic degradation.
Collapse
Affiliation(s)
- Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
- Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
- *Correspondence: Eun-Kyeong Jo,
| |
Collapse
|
17
|
Meena CL, Singh P, Shaliwal RP, Kumar V, Kumar A, Tiwari AK, Asthana S, Singh R, Mahajan D. Synthesis and evaluation of thiophene based small molecules as potent inhibitors of Mycobacterium tuberculosis. Eur J Med Chem 2020; 208:112772. [PMID: 32920342 DOI: 10.1016/j.ejmech.2020.112772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/18/2020] [Accepted: 08/17/2020] [Indexed: 11/30/2022]
Abstract
Herein, we report the synthesis and anti-tubercular studies of novel molecules based on thiophene scaffold. We identified two novel small molecules 4a and 4b, which demonstrated 2-fold higher in vitro activity (MIC99: 0.195 μM) compared to first line TB drug, isoniazid (0.39 μM). The identified leads demonstrated additive effect with front line TB drugs (isoniazid, rifampicin and levofloxacin) and synergistic effect with a recently FDA-approved drug, bedaquiline. Mechanistic studies (i) negated the role of Pks13 and (ii) suggested the involvement of KatG in the anti-tubercular activity of these identified leads.
Collapse
Affiliation(s)
- Chhuttan L Meena
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Padam Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ravi P Shaliwal
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Varun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Arun Kumar
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Anoop Kumar Tiwari
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India
| | - Ramandeep Singh
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| | - Dinesh Mahajan
- Translational Health Science and Technology Institute (THSTI), NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad, 121001, India.
| |
Collapse
|
18
|
Chiarelli LR, Degiacomi G, Egorova A, Makarov V, Pasca MR. Nitric oxide-releasing compounds for the treatment of lung infections. Drug Discov Today 2020; 26:542-550. [PMID: 33181094 DOI: 10.1016/j.drudis.2020.10.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
The spread of acquired drug resistance and of microorganisms naturally resistant to antibiotics is a major threat to global health, leading to an urgent need for novel antimicrobial compounds. Exogenous nitric oxide (NO) represents an attractive and promising antimicrobial approach, showing both bactericidal and biofilm dispersal activities. Numerous studies have been performed to develop NO donor scaffolds, including small molecules, macromolecular compounds, nanoparticles (NPs), and polymeric materials. This approach has resulted in successful outcomes, with some NO-releasing compounds entering clinical practice. In this review, we highlight the importance of this strategy, with a focus on lung infections.
Collapse
Affiliation(s)
- Laurent R Chiarelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Giulia Degiacomi
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Anna Egorova
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt 33-2, 119071, Moscow, Russia
| | - Vadim Makarov
- Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt 33-2, 119071, Moscow, Russia
| | - Maria Rosalia Pasca
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
19
|
Singh P, Khurana H, Yadav SP, Dhiman K, Singh P, Ashish, Singh R, Sharma D. Biochemical characterization of ClpB protein from Mycobacterium tuberculosis and identification of its small-molecule inhibitors. Int J Biol Macromol 2020; 165:375-387. [PMID: 32987071 DOI: 10.1016/j.ijbiomac.2020.09.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/25/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Tuberculosis, caused by pathogenic M. tuberculosis, remains a global health concern among various infectious diseases. Studies show that ClpB, a major disaggregase, protects the pathogen from various stresses encountered in the host environment. In the present study we have performed a detailed biophysical characterization of M. tuberculosis ClpB followed by a high throughput screening to identify small molecule inhibitors. The sedimentation velocity studies reveal that ClpB oligomerization varies with its concentration and presence of nucleotides. Further, using high throughput malachite green-based screening assay, we identified potential novel inhibitors of ClpB ATPase activity. The enzyme kinetics revealed that the lead molecule inhibits ClpB activity in a competitive manner. These drugs were also able to inhibit ATPase activity associated with E. coli ClpB and yeast Hsp104. The identified drugs inhibited the growth of intracellular bacteria in macrophages. Small angle X-ray scattering based modeling shows that ATP, and not its non-hydrolyzable analogs induce large scale conformational rearrangements in ClpB. Remarkably, the identified small molecules inhibited these ATP inducible conformational changes, suggesting that nucleotide induced shape changes are crucial for ClpB activity. The study broadens our understanding of M. tuberculosis chaperone machinery and provides the basis for designing more potent inhibitors against ClpB chaperone.
Collapse
Affiliation(s)
- Prashant Singh
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Harleen Khurana
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Shiv Pratap Yadav
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Kanika Dhiman
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Padam Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Ashish
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, India.
| |
Collapse
|