1
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
2
|
Sokolov SS, Zyrina AN, Akimov SA, Severin FF. Interrelationship between the Non-Vesicular Transport of Sterols and Their Distribution between the Rafts and the Non-Raft Phase of the Plasma Membrane. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:321-333. [PMID: 40367076 DOI: 10.1134/s0006297924604313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 05/16/2025]
Abstract
Sterols significantly affect the barrier properties of the membrane, which might explains the fact that their concentration is maximal in the plasma membrane (PM). Together with sphingolipids, sterols form rafts, i.e., bilayer regions whose physicochemical properties differ from those of the surrounding PM. The presence of rafts allows membrane proteins to choose the lipid environment optimal for their functioning (in terms of thickness, rigidity, spontaneous curvature, and lateral pressure profile of the bilayer). The ratio between sterols and sphingolipids in the rafts is close to stoichiometric. Theoretically, excess sterol outside the rafts can critically reduce the degree of order of membrane phospholipids. Sterols are synthesized in the endoplasmic reticulum (ER). The active (against the concentration gradient) transport of sterols from the ER to the PM is driven by proteins of the Osh family, while Lam proteins provide passive reverse transport of sterols from the PM to the ER. Inactivation of Osh proteins does not reduce the total level of sterols in the PM but reduces the rate of their movement inside the PM (the mechanisms underlying this effect remains unclear). Therefore, the vesicular transport of sterols from the ER to the PM is probably more active than the non-vesicular transport carried out by Osh proteins. Since sterols are more rigidly anchored and less sterically accessible in the rafts than outside them, we suggested that Lam proteins transport excess sterols from the non-raft phase of the PM to the ER, and Osh proteins return them back to the PM. In this way, the mutual activity of the Osh and lam proteins provides the rotation of sterols between the non-raft fraction of the PM and rafts, with the enrichment of the latter. It is possible that with a decrease in the sterol concentration in the non-raft fraction of the membrane, the rate of the Lam-dependent transport decreases since the degree of order of phospholipids and, consequently, the strength of retention of sterol molecules in the membrane increases, which might represent a mechanisms maintaining the concentration and distribution of sterols in the PM.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Anna N Zyrina
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products (Institute of Poliomyelitis), Russian Academy of Sciences, Moscow, 108819, Russia
| | - Sergey A Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Fedor F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
3
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Sagarika P, Dobriyal N, Deepsika P, Vairagkar A, Das A, Sahi C. Specificity of Membrane-Associated J-Domain Protein, Caj1, in Amphotericin B Tolerance in Budding Yeast. Mol Microbiol 2024; 122:819-830. [PMID: 39289920 DOI: 10.1111/mmi.15318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/23/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024]
Abstract
Hsp70:J-domain protein (JDP) machineries play pivotal roles in maintaining cellular proteostasis and governing various aspects of fungal physiology. While Hsp70 is known for its involvement in conferring tolerance to diverse antifungal drugs, the specific contribution of JDPs remains unclear. In this study, we examined the sensitivity of cytosolic JDP deletion strains of budding yeast to amphotericin B (AmB), a polyene antifungal agent widely utilized in fungal disease treatment due to its ability to disrupt the fungal plasma membrane (PM). Deleting Caj1, a PM-associated class II JDP, heightened susceptibility to AmB, and the protection conferred by Caj1 against AmB necessitated both its N-terminal J-domain and C-terminal lipid binding domain. Moreover, Caj1 deficiency compromised PM integrity as evidenced by increased phosphate efflux and exacerbated AmB sensitivity, particularly at elevated temperatures. Notably, phytosphingosine (PHS) addition as well as overexpression of PMP3, a positive PM integrity regulator, significantly rescued AmB sensitivity of caj1Δ cells. Our results align with the notion that Caj1 associates with the PM and cooperates with Hsp70 to regulate PM proteostasis, thereby influencing PM integrity in budding yeast. Loss of Caj1 function at the PM compromises PM protein quality control, thereby rendering yeast cells more susceptible to AmB.
Collapse
Affiliation(s)
| | | | | | - Avanti Vairagkar
- Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Chandan Sahi
- Department of Biological Sciences, IISER, Bhopal, India
| |
Collapse
|
5
|
Tanwar S, Kalra S, Bari VK. Insights into the role of sterol metabolism in antifungal drug resistance: a mini-review. Front Microbiol 2024; 15:1409085. [PMID: 39464401 PMCID: PMC11502366 DOI: 10.3389/fmicb.2024.1409085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/26/2024] [Indexed: 10/29/2024] Open
Abstract
Sterols are essential for eukaryotic cells and are crucial in cellular membranes' structure, function, fluidity, permeability, adaptability to environmental stressors, and host-pathogen interactions. Fungal sterol, such as ergosterol metabolism, involves several organelles, including the mitochondria, lipid droplets, endoplasmic reticulum, and peroxisomes that can be regulated mainly by feedback mechanisms and transcriptionally. The majority of sterol transport in yeast occurs via non-vesicular transport pathways mediated by lipid transfer proteins, which determine the quantity of sterol present in the cell membrane. Pathogenic fungi Candida, Aspergillus, and Cryptococcus species can cause a range of superficial to potentially fatal systemic and invasive infections that are more common in immunocompromised patients. There is a significant risk of morbidity and mortality from these infections, which are very difficult to cure. Several antifungal drugs with different modes of action have received clinical approval to treat fungal infections. Antifungal drugs targeting the ergosterol biosynthesis pathway are well-known for their antifungal activity; however, an imbalance in the regulation and transport of ergosterol could lead to resistance to antifungal therapy. This study summarizes how fungal sterol metabolism and regulation can modulate sterol-targeting antifungal drug resistance.
Collapse
|
6
|
Kong Y, Guo P, Xu J, Li J, Wu M, Zhang Z, Wang Y, Liu X, Yang L, Liu M, Zhang H, Wang P, Zhang Z. MoMkk1 and MoAtg1 dichotomously regulating autophagy and pathogenicity through MoAtg9 phosphorylation in Magnaporthe oryzae. mBio 2024; 15:e0334423. [PMID: 38501872 PMCID: PMC11005334 DOI: 10.1128/mbio.03344-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Autophagy is a central biodegradation pathway critical in eliminating intracellular cargo to maintain cellular homeostasis and improve stress resistance. At the same time, the key component of the mitogen-activated protein kinase cascade regulating cell wall integrity signaling MoMkk1 has an essential role in the autophagy of the rice blast fungus Magnaporthe oryzae. Still, the mechanism of how MoMkk1 regulates autophagy is unclear. Interestingly, we found that MoMkk1 regulates the autophagy protein MoAtg9 through phosphorylation. MoAtg9 is a transmembrane protein subjected to phosphorylation by autophagy-related protein kinase MoAtg1. Here, we provide evidence demonstrating that MoMkk1-dependent MoAtg9 phosphorylation is required for phospholipid translocation during isolation membrane stages of autophagosome formation, an autophagic process essential for the development and pathogenicity of the fungus. In contrast, MoAtg1-dependent phosphorylation of MoAtg9 negatively regulates this process, also impacting growth and pathogenicity. Our studies are the first to demonstrate that MoAtg9 is subject to MoMkk1 regulation through protein phosphorylation and that MoMkk1 and MoAtg1 dichotomously regulate autophagy to underlie the growth and pathogenicity of M. oryzae.IMPORTANCEMagnaporthe oryzae utilizes multiple signaling pathways to promote colonization of host plants. MoMkk1, a cell wall integrity signaling kinase, plays an essential role in autophagy governed by a highly conserved autophagy kinase MoAtg1-mediated pathway. How MoMkk1 regulates autophagy in coordination with MoAtg1 remains elusive. Here, we provide evidence that MoMkk1 phosphorylates MoAtg9 to positively regulate phospholipid translocation during the isolation membrane or smaller membrane structures stage of autophagosome formation. This is in contrast to the negative regulation of MoAtg9 by MoAtg1 for the same process. Intriguingly, MoMkk1-mediated MoAtg9 phosphorylation enhances the fungal infection of rice, whereas MoAtg1-dependant MoAtg9 phosphorylation significantly attenuates it. Taken together, we revealed a novel mechanism of autophagy and virulence regulation by demonstrating the dichotomous functions of MoMkk1 and MoAtg1 in the regulation of fungal autophagy and pathogenicity.
Collapse
Affiliation(s)
- Yun Kong
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Pusheng Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiayun Xu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Jiaxu Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Miao Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ziqi Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Leiyun Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Muxing Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Haifeng Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Zhu XM, Li L, Bao JD, Wang JY, Liang S, Zhao LL, Huang CL, Yan JY, Cai YY, Wu XY, Dong B, Liu XH, Klionsky DJ, Lin FC. MoVast2 combined with MoVast1 regulates lipid homeostasis and autophagy in Magnaporthe oryzae. Autophagy 2023; 19:2353-2371. [PMID: 36803211 PMCID: PMC10351449 DOI: 10.1080/15548627.2023.2181739] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li-Li Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chang-Li Huang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiong-Yi Yan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Ying Cai
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi-Yu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Zhao F, Zhang Y, Hu J, Shi C, Ao X, Wang S, Lin Y, Sun Z, Han S. Disruption of phosphate metabolism and sterol transport-related genes conferring yeast resistance to vanillin and rapid ethanol production. BIORESOURCE TECHNOLOGY 2023; 369:128489. [PMID: 36528179 DOI: 10.1016/j.biortech.2022.128489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Vanillin is a potent growth-inhibiting factor in Saccharomyces cerevisiae during lignocellulose biorefineries. Here, a haploid gene-deletion library was screened to search for vanillin-tolerant mutants and explain the possible tolerance mechanisms. Twenty-two deletion mutants were identified. The deleted genes in these mutants were involved in phosphate and inositol polyphosphate metabolism and intracellular sterol transport. Activation of the phosphate signaling pathway is not conducive to yeast against the pressure of vanillin. Furthermore, the findings indicate the role of inositol polyphosphates in altering vanillin tolerance by regulating phosphate metabolism. Meanwhile, reducing the transport of sterols from the plasma membrane enhanced tolerance to vanillin. In the presence of vanillin, the representative yeast deletions, pho84Δ and lam3Δ, showed good growth performance and promoted rapid ethanol production. Overall, this study identifies robust yeast strain alternatives for ethanol fermentation of cellulose and provides guidance for further genomic reconstruction of yeast strains.
Collapse
Affiliation(s)
- Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yaping Zhang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian Hu
- School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ce Shi
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiang Ao
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shengding Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongwei Sun
- Fleming Biological Pharmaceutical Limited Company, Nanning, 530031, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Sokolov SS, Popova MM, Pohl P, Horner A, Akimov SA, Kireeva NA, Knorre DA, Batishchev OV, Severin FF. Structural Role of Plasma Membrane Sterols in Osmotic Stress Tolerance of Yeast Saccharomyces cerevisiae. MEMBRANES 2022; 12:1278. [PMID: 36557185 PMCID: PMC9781751 DOI: 10.3390/membranes12121278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Yeast S. cerevisiae has been shown to suppress a sterol biosynthesis as a response to hyperosmotic stress. In the case of sodium stress, the failure to suppress biosynthesis leads to an increase in cytosolic sodium. The major yeast sterol, ergosterol, is known to regulate functioning of plasma membrane proteins. Therefore, it has been suggested that the suppression of its biosynthesis is needed to adjust the activity of the plasma membrane sodium pumps and channels. However, as the sterol concentration is in the range of thirty to forty percent of total plasma membrane lipids, it is believed that its primary biological role is not regulatory but structural. Here we studied how lowering the sterol content affects the response of a lipid bilayer to an osmotic stress. In accordance with previous observations, we found that a decrease of the sterol fraction increases a water permeability of the liposomal membranes. Yet, we also found that sterol-free giant unilamellar vesicles reduced their volume during transient application of the hyperosmotic stress to a greater extent than the sterol-rich ones. Furthermore, our data suggest that lowering the sterol content in yeast cells allows the shrinkage to prevent the osmotic pressure-induced plasma membrane rupture. We also found that mutant yeast cells with the elevated level of sterol accumulated propidium iodide when exposed to mild hyperosmotic conditions followed by hypoosmotic stress. It is likely that the decrease in a plasma membrane sterol content stimulates a drop in cell volume under hyperosmotic stress, which is beneficial in the case of a subsequent hypo-osmotic one.
Collapse
Affiliation(s)
- Svyatoslav S. Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Marina M. Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Peter Pohl
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Natalia A. Kireeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Dmitry A. Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiyprospekt, 119071 Moscow, Russia
| | - Fedor F. Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 1-40 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
10
|
Sokolov SS, Volynsky PE, Zangieva OT, Severin FF, Glagoleva ES, Knorre DA. Cytostatic effects of structurally different ginsenosides on yeast cells with altered sterol biosynthesis and transport. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183993. [PMID: 35724740 DOI: 10.1016/j.bbamem.2022.183993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Triterpene glycosides are a diverse group of plant secondary metabolites, consisting of a sterol-like aglycon and one or several sugar groups. A number of triterpene glycosides show membranolytic activity, and, therefore, are considered to be promising antimicrobial drugs. However, the interrelation between their structure, biological activities, and target membrane lipid composition remains elusive. Here we studied the antifungal effects of four Panax triterpene glycosides (ginsenosides) with sugar moieties at the C-3 (ginsenosides Rg3, Rh2), C-20 (compound K), and both (ginsenoside F2) positions in Saccharomyces cerevisiae mutants with altered sterol plasma membrane composition. We observed reduced cytostatic activity of the Rg3 and compound K in the UPC2-1 strain with high membrane sterol content. Moreover, LAM gene deletion reduced yeast resistance to Rg3 and digitonin, another saponin with glycosylated aglycon in the C-3 position. LAM genes encode plasma membrane-anchored StARkin superfamily-member sterol transporters. We also showed that the deletion of the ERG6 gene that inhibits ergosterol biosynthesis at the stage of zymosterol increased the cytostatic effects of Rg3 and Rh2, but not the other two tested ginsenosides. At the same time, in silico simulation revealed that the substitution of ergosterol with zymosterol in the membrane changes the spatial orientation of Rg3 and Rh2 in the membranes. These results imply that the plasma membrane sterol composition defines its interaction with triterpene glycoside depending on their glycoside group position. Our results also suggest that the biological role of membrane-anchored StARkin family protein is to protect eukaryotic cells from triterpenes glycosylated at the C-3 position.
Collapse
Affiliation(s)
- Svyatoslav S Sokolov
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia
| | - Pavel E Volynsky
- Laboratory of Biomolecular Modeling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997, Miklukho-Maklaya Str., 16/10, Moscow, Russia
| | - Olga T Zangieva
- Federal State Budgetary Institution "National Medical and Surgical Center named after N.I.Pirogov" of the Ministry of Healthcare of the Russian Federation, 105203, Nizhnyaya Pervomayskaya str., 70, Moscow, Russia
| | - Fedor F Severin
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia
| | - Elena S Glagoleva
- Faculty of Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-12, Moscow, Russia
| | - Dmitry A Knorre
- Department of Molecular Energetics of Microorganisms, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Leninskie Gory 1-40, Moscow, Russia.
| |
Collapse
|
11
|
Abstract
Microorganisms cooperate with each other to protect themselves from environmental stressors. An extreme case of such cooperation is regulated cell death for the benefit of other cells. Dying cells can provide surviving cells with nutrients or induce their stress response by transmitting an alarm signal; however, the role of dead cells in microbial communities is unclear. Here, we searched for types of stressors the protection from which can be achieved by death of a subpopulation of cells. Thus, we compared the survival of Saccharomyces cerevisiae cells upon exposure to various stressors in the presence of additionally supplemented living versus dead cells. We found that dead cells contribute to yeast community resistance against macrolide antifungals (e.g., amphotericin B [AmB] and filipin) to a greater extent than living cells. Dead yeast cells absorbed more macrolide filipin than control cells because they exposed intracellular sterol-rich membranes. We also showed that, upon the addition of lethal concentrations of AmB, supplementation with AmB-sensitive cells but not with AmB-resistant cells enabled the survival of wild-type cells. Together, our data suggest that cell-to-cell heterogeneity in sensitivity to AmB can be an adaptive mechanism helping yeast communities to resist macrolides, which are naturally occurring antifungal agents. IMPORTANCE Eukaryotic microorganisms harbor elements of programmed cell death (PCD) mechanisms that are homologous to the PCD of multicellular metazoa. However, it is still debated whether microbial PCD has an adaptive role or whether the processes of cell death are an aimless operation in self-regulating molecular mechanisms. Here, we demonstrated that dying yeast cells provide an instant benefit for their community by absorbing macrolides, which are bacterium-derived antifungals. Our results illustrate the principle that the death of a microorganism can contribute to the survival of its kin and suggest that early plasma membrane permeabilization improves community-level protection. The latter makes a striking contrast to the manifestations of apoptosis in higher eukaryotes, the process by which plasma membranes maintain integrity.
Collapse
|
12
|
Knorre DA, Galkina KV, Shirokovskikh T, Banerjee A, Prasad R. Do Multiple Drug Resistance Transporters Interfere with Cell Functioning under Normal Conditions? BIOCHEMISTRY (MOSCOW) 2021; 85:1560-1569. [PMID: 33705294 DOI: 10.1134/s0006297920120081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells rely on multiple mechanisms to protect themselves from exogenous toxic compounds. For instance, cells can limit penetration of toxic molecules through the plasma membrane or sequester them within the specialized compartments. Plasma membrane transporters with broad substrate specificity confer multiple drug resistance (MDR) to cells. These transporters efflux toxic compounds at the cost of ATP hydrolysis (ABC-transporters) or proton influx (MFS-transporters). In our review, we discuss the possible costs of having an active drug-efflux system using yeast cells as an example. The pleiotropic drug resistance (PDR) subfamily ABC-transporters are known to constitutively hydrolyze ATP even without any substrate stimulation or transport across the membrane. Besides, some MDR-transporters have flippase activity allowing transport of lipids from inner to outer lipid layer of the plasma membrane. Thus, excessive activity of MDR-transporters can adversely affect plasma membrane properties. Moreover, broad substrate specificity of ABC-transporters also suggests the possibility of unintentional efflux of some natural metabolic intermediates from the cells. Furthermore, in some microorganisms, transport of quorum-sensing factors is mediated by MDR transporters; thus, overexpression of the transporters can also disturb cell-to-cell communications. As a result, under normal conditions, cells keep MDR-transporter genes repressed and activate them only upon exposure to stresses. We speculate that exploiting limitations of the drug-efflux system is a promising strategy to counteract MDR in pathogenic fungi.
Collapse
Affiliation(s)
- D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - K V Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - T Shirokovskikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - A Banerjee
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| | - R Prasad
- Amity Institute of Biotechnology and Amity Institute of Integrative Sciences and Health, Amity University Haryana, Amity Education Valley, Gurugram, 122413, India
| |
Collapse
|
13
|
Zhu XM, Li L, Cai YY, Wu XY, Shi HB, Liang S, Qu YM, Naqvi NI, Del Poeta M, Dong B, Lin FC, Liu XH. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy 2020; 17:2939-2961. [PMID: 33176558 DOI: 10.1080/15548627.2020.1848129] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sterols are a class of lipids critical for fundamental biological processes and membrane dynamics. These molecules are synthesized in the endoplasmic reticulum (ER) and are transported bi-directionally between the ER and plasma membrane (PM). However, the trafficking mechanism of sterols and their relationship with macroautophagy/autophagy are still poorly understood in the rice blast fungus Magnaporthe oryzae. Here, we identified the VAD1 Analog of StAR-related lipid transfer (VASt) domain-containing protein MoVast1 via co-immunoprecipitation in M. oryzae. Loss of MoVAST1 resulted in conidial defects, impaired appressorium development, and reduced pathogenicity. The MoTor (target of rapamycin in M. oryzae) activity is inhibited because MoVast1 deletion leads to high levels of sterol accumulation in the PM. Site-directed mutagenesis showed that the 902 T site is essential for localization and function of MoVast1. Through filipin or Flipper-TR staining, autophagic flux detection, MoAtg8 lipidation, and drug sensitivity assays, we uncovered that MoVast1 acts as a novel autophagy inhibition factor that monitors tension in the PM by regulating the sterol content, which in turn modulates the activity of MoTor. Lipidomics and transcriptomics analyses further confirmed that MoVast1 is an important regulator of lipid metabolism and the autophagy pathway. Our results revealed and characterized a novel sterol transfer protein important for M. oryzae pathogenicity.Abbreviations: AmB: amphotericin B; ATMT: Agrobacterium tumefaciens-mediated transformation; CM: complete medium; dpi: days post-inoculation; ER: endoplasmic reticulum; Flipper-TR: fluorescent lipid tension reporter; GO: Gene ontology; hpi: hours post-inoculation; IH: invasive hyphae; KEGG: kyoto encyclopedia of genes and genomes; MoTor: target of rapamycin in Magnaporthe oryzae; PalmC: palmitoylcarnitine; PM: plasma membrane; SD-N: synthetic defined medium without amino acids and ammonium sulfate; TOR: target of rapamycin; VASt: VAD1 Analog of StAR-related lipid transfer; YFP, yellow fluorescent protein.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying-Ying Cai
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi-Yu Wu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huan-Bin Shi
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Liang
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying-Min Qu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA.,Veterans Affairs Medical Center, Northport, New York, USA
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Fu-Cheng Lin
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Lipophilic Cations Rescue the Growth of Yeast under the Conditions of Glycolysis Overflow. Biomolecules 2020; 10:biom10091345. [PMID: 32962296 PMCID: PMC7563754 DOI: 10.3390/biom10091345] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/24/2022] Open
Abstract
Chemicals inducing a mild decrease in the ATP/ADP ratio are considered as caloric restriction mimetics as well as treatments against obesity. Screening for such chemicals in animal model systems requires a lot of time and labor. Here, we present a system for the rapid screening of non-toxic substances causing such a de-energization of cells. We looked for chemicals allowing the growth of yeast lacking trehalose phosphate synthase on a non-fermentable carbon source in the presence of glucose. Under such conditions, the cells cannot grow because the cellular phosphate is mostly being used to phosphorylate the sugars in upper glycolysis, while the biosynthesis of bisphosphoglycerate is blocked. We reasoned that by decreasing the ATP/ADP ratio, one might prevent the phosphorylation of the sugars and also boost bisphosphoglycerate synthesis by providing the substrate, i.e., inorganic phosphate. We confirmed that a complete inhibition of oxidative phosphorylation alleviates the block. As our system includes a non-fermentable carbon source, only the chemicals that did not cause a complete block of mitochondrial ATP synthesis allowed the initial depletion of glucose followed by respiratory growth. Using this system, we found two novel compounds, dodecylmethyl diphenylamine (FS1) and diethyl (tetradecyl) phenyl ammonium bromide (Kor105), which possess a mild membrane-depolarizing activity.
Collapse
|
15
|
Protonophore FCCP provides fitness advantage to PDR-deficient yeast cells. J Bioenerg Biomembr 2020; 52:383-395. [DOI: 10.1007/s10863-020-09849-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 08/06/2020] [Indexed: 01/02/2023]
|
16
|
Sokolov SS, Galkina KV, Litvinova EA, Knorre DA, Severin FF. The Role of LAM Genes in the Pheromone-Induced Cell Death of S. cerevisiae Yeast. BIOCHEMISTRY. BIOKHIMIIA 2020; 85:300-309. [PMID: 32564734 DOI: 10.1134/s0006297920030050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 11/23/2022]
Abstract
Lam1-4 proteins perform non-vesicular transport of sterols from the plasma membrane to the endoplasmic reticulum. Disruption of their function leads to an increase in the content of sterols in the plasma membrane. In mammals, homologs of Lam proteins are responsible for the internalization of plasma cholesterol. The biological role of Lam proteins in yeast remains unclear, since the strains lacking individual LAM genes do not display any pronounced phenotype. Deletion of LAM1 (YSP1) gene inhibits the regulated death of Saccharomyces cerevisiae yeast cells induced by the mating pheromone. Here, we investigated whether LAM2 also plays a role in the cell death induced by the excess of mating pheromone and assessed genetic interactions between LAM2 and genes responsible for ergosterol biosynthesis. We have shown that LAM2 deletion partially prevents pheromone-induced death of yeast cells of the laboratory strain W303, while deletions of three other LAM genes - LAM1, LAM3, and LAM4 - does not provide any additional rescuing effect. The UPC2-1 mutation in the transcription factor UPC2 gene, which leads to the excessive accumulation of sterols in the cell, promotes cell survival in the presence of the pheromone and shows additivity with the LAM2 deletion. On the contrary, LAM2 deletion stimulates pheromone-induced cell death in the laboratory strain BY4741. We have found that the deletion of ergosterol biosynthesis genes ERG2 and ERG6 reduces the effect of LAM2 deletion. Deletion of LAM2 in the Δerg4 strain lacking the gene of the last step of ergosterol biosynthesis, significantly increased the proportion of dead cells and decreased the growth rate of the yeast suspension culture even in the absence of the pheromone. We suggest that the absence of the effect of LAM2 deletion in the Δerg6 and Δerg2 strains indicates the inability of Lam2p to transport some ergosterol biosynthesis intermediates, such as lanosterol. Taken together, our data suggest that the role of Lam proteins in the regulated death of yeast cells caused by the mating pheromone is due to their effect on the plasma membrane sterol composition.
Collapse
Affiliation(s)
- S S Sokolov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - K V Galkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - E A Litvinova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia
| | - D A Knorre
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
- Sechenov First Moscow State Medical University, Moscow, 119991, Russia
| | - F F Severin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|