1
|
Pintye A, Bacsó R, Kovács GM. Trans-kingdom fungal pathogens infecting both plants and humans, and the problem of azole fungicide resistance. Front Microbiol 2024; 15:1354757. [PMID: 38410389 PMCID: PMC10896089 DOI: 10.3389/fmicb.2024.1354757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/23/2024] [Indexed: 02/28/2024] Open
Abstract
Azole antifungals are abundantly used in the environment and play an important role in managing fungal diseases in clinics. Due to the widespread use, azole resistance is an emerging global problem for all applications in several fungal species, including trans-kingdom pathogens, capable of infecting plants and humans. Azoles used in agriculture and clinics share the mode of action and facilitating cross-resistance development. The extensive use of azoles in the environment, e.g., for plant protection and wood preservation, contributes to the spread of resistant populations and challenges using these antifungals in medical treatments. The target of azoles is the cytochrome p450 lanosterol 14-α demethylase encoded by the CYP51 (called also as ERG11 in the case of yeasts) gene. Resistance mechanisms involve mainly the mutations in the coding region in the CYP51 gene, resulting in the inadequate binding of azoles to the encoded Cyp51 protein, or mutations in the promoter region causing overexpression of the protein. The World Health Organization (WHO) has issued the first fungal priority pathogens list (FPPL) to raise awareness of the risk of fungal infections and the increasingly rapid spread of antifungal resistance. Here, we review the main issues about the azole antifungal resistance of trans-kingdom pathogenic fungi with the ability to cause serious human infections and included in the WHO FPPL. Methods for the identification of these species and detection of resistance are summarized, highlighting the importance of these issues to apply the proper treatment.
Collapse
Affiliation(s)
- Alexandra Pintye
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Renáta Bacsó
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
| | - Gábor M. Kovács
- Centre for Agricultural Research, Plant Protection Institute, HUN-REN, Budapest, Hungary
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Wang H, Ji Z, Feng Y, Yan T, Cao Y, Lu H, Jiang Y. Myriocin enhances the antifungal activity of fluconazole by blocking the membrane localization of the efflux pump Cdr1. Front Pharmacol 2022; 13:1101553. [PMID: 36618949 PMCID: PMC9815617 DOI: 10.3389/fphar.2022.1101553] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction: Extrusion of azoles from the cell, mediated by an efflux pump Cdr1, is one of the most frequently used strategies for developing azole resistance in pathogenic fungi. The efflux pump Cdr1 is predominantly localized in lipid rafts within the plasma membrane, and its localization is sensitive to changes in the composition of lipid rafts. Our previous study found that the calcineurin signal pathway is important in transferring sphingolipids from the inner to the outer membrane. Methods: We investigated multiple factors that enhance the antifungal activity of fluconazole (FLC) using minimum inhibitory concentration (MIC) assays and disk diffusion assays. We studied the mechanism of action of myriocin through qRT-PCR analysis and confocal microscopy analysis. We tested whether myriocin enhanced the antifungal activity of FLC and held therapeutic potential using a mouse infection model. Results: We found that this signal pathway has no function in the activity of Cdr1. We found that inhibiting sphingolipid biosynthesis by myriocin remarkably increased the antifungal activity of FLC with a broad antifungal spectrum and held therapeutic potential. We further found that myriocin potently enhances the antifungal activity of FLC against C. albicans by blocking membrane localization of the Cdr1 rather than repressing the expression of Cdr1. In addition, we found that myriocin enhanced the antifungal activity of FLC and held therapeutic potential. Discussion: Our study demonstrated that blocking the membrane location and inactivating Cdr1 by inhibiting sphingolipids biogenesis is beneficial for enhancing the antifungal activity of azoles against azole-resistant C. albicans due to Cdr1 activation.
Collapse
Affiliation(s)
- Hongkang Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhe Ji
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanru Feng
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhua Yan
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongbing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| | - Hui Lu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| | - Yuanying Jiang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yongbing Cao, ; Hui Lu, ; Yuanying Jiang,
| |
Collapse
|
3
|
Sokolova GD, Budynkov NI, Tselipanova EE, Glinushkin AP. Species Diversity in the Fusarium solani (Neocosmospora) Complex and Their Pathogenicity for Plants and Humans. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:416-427. [PMID: 36781537 DOI: 10.1134/s0012496622060217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 02/15/2023]
Abstract
The Fusarium solani species complex is a large group of soil saprotrophs with a broad adaptive potential, which allows the fungi to exist under various conditions and to parasitize on different hosts. The review analyzes the modern data concerning the genetic peculiarities of species from this complex by the example of F. solani f. sp. pisi and generalizes the data on the most widespread species pathogenic for both plants and humans. The enhanced resistance of the F. solani species complex to the most of modern antifungal agents and the need for novel therapeutic agents against fusariosis has been considered.
Collapse
Affiliation(s)
- G D Sokolova
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia.
| | - N I Budynkov
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| | - E E Tselipanova
- Moscow Regional Vladimirsky Research Clinical Institute, Moscow, Russia.
| | - A P Glinushkin
- All-Russian Research Institute of Phytopathology, Bolshiye Vyazemy, Russia
| |
Collapse
|
4
|
Celia-Sanchez BN, Mangum B, Brewer M, Momany M. Analysis of Cyp51 protein sequences shows 4 major Cyp51 gene family groups across fungi. G3 (BETHESDA, MD.) 2022; 12:jkac249. [PMID: 36130263 PMCID: PMC9635630 DOI: 10.1093/g3journal/jkac249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Azole drugs target fungal sterol biosynthesis and are used to treat millions of human fungal infections each year. Resistance to azole drugs has emerged in multiple fungal pathogens including Candida albicans, Cryptococcus neoformans, Histoplasma capsulatum, and Aspergillus fumigatus. The most well-studied resistance mechanism in A. fumigatus arises from missense mutations in the coding sequence combined with a tandem repeat in the promoter of cyp51A, which encodes a cytochrome P450 enzyme in the fungal sterol biosynthesis pathway. Filamentous members of Ascomycota such as A. fumigatus have either 1 or 2 of 3 Cyp51 paralogs (Cyp51A, Cyp51B, and Cyp51C). Most previous research in A. fumigatus has focused on Cyp51A due to its role in azole resistance. We used the A. fumigatus Cyp51A protein sequence as the query in database searches to identify Cyp51 proteins across fungi. We found 435 Cyp51 proteins in 295 species spanning from early-diverging fungi (Blastocladiomycota, Chytridiomycota, Zoopagomycota, and Mucormycota) to late-diverging fungi (Ascomycota and Basidiomycota). We found these sequences formed 4 major Cyp51 groups: Cyp51, Cyp51A, Cyp51B, and Cyp51C. Surprisingly, we found all filamentous Ascomycota had a Cyp51B paralog, while only 50% had a Cyp51A paralog. We created maximum likelihood trees to investigate the evolution of Cyp51 in fungi. Our results suggest Cyp51 is present in all fungi with 3 paralogs emerging in Pezizomycotina, including Cyp51C which appears to have diverged from the progenitor of the Cyp51A and Cyp51B groups.
Collapse
Affiliation(s)
| | - Brandon Mangum
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| | - Marin Brewer
- Department of Plant Pathology, University of Georgia, Athens, GA 30606, USA
| | - Michelle Momany
- Department of Plant Biology, University of Georgia, Athens, GA 30606, USA
| |
Collapse
|
5
|
James JE, Santhanam J, Cannon RD, Lamping E. Voriconazole Treatment Induces a Conserved Sterol/Pleiotropic Drug Resistance Regulatory Network, including an Alternative Ergosterol Biosynthesis Pathway, in the Clinically Important FSSC Species, Fusarium keratoplasticum. J Fungi (Basel) 2022; 8:jof8101070. [PMID: 36294635 PMCID: PMC9605146 DOI: 10.3390/jof8101070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/09/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Fusarium keratoplasticum is the Fusarium species most commonly associated with human infections (fusariosis). Antifungal treatment of fusariosis is often hampered by limited treatment options due to resistance towards azole antifungals. The mechanisms of antifungal resistance and sterol biosynthesis in fusaria are poorly understood. Therefore, in this study we assessed the transcriptional response of F. keratoplasticum when exposed to voriconazole. Our results revealed a group of dramatically upregulated ergosterol biosynthesis gene duplicates, most notably erg6A (912-fold), cyp51A (52-fold) and ebp1 (20-fold), which are likely part of an alternative ergosterol biosynthesis salvage pathway. The presence of human cholesterol biosynthesis gene homologs in F. keratoplasticum (ebp1, dhcr7 and dhcr24_1, dhcr24_2 and dhcr24_3) suggests that additional sterol biosynthesis pathways may be induced in fusaria under other growth conditions or during host invasion. Voriconazole also induced the expression of a number of ABC efflux pumps. Further investigations suggested that the highly conserved master regulator of ergosterol biosynthesis, FkSR, and the pleiotropic drug resistance network that induces zinc-cluster transcription factor FkAtrR coordinate the response of FSSC species to azole antifungal exposure. In-depth genome mining also helped clarify the ergosterol biosynthesis pathways of moulds and provided a better understanding of antifungal drug resistance mechanisms in fusaria.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
- Correspondence: (J.S.); (R.D.C.); (E.L.); Tel.: +60-3-9289-7039 (J.S.); +64-3-479-7081 (R.D.C.); +64-3-479-5290 (E.L.)
| |
Collapse
|
6
|
James JE, Santhanam J, Zakaria L, Mamat Rusli N, Abu Bakar M, Suetrong S, Sakayaroj J, Abdul Razak MF, Lamping E, Cannon RD. Morphology, Phenotype, and Molecular Identification of Clinical and Environmental Fusarium solani Species Complex Isolates from Malaysia. J Fungi (Basel) 2022; 8:jof8080845. [PMID: 36012833 PMCID: PMC9409803 DOI: 10.3390/jof8080845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Fusarium infections in humans (fusariosis) and in economically important plants involve species of several Fusarium species complexes. Species of the Fusarium solani species complex (FSSC) are the most frequent cause of human fusariosis. The FSSC comprises more than 60 closely related species that can be separated into three major clades by multi-locus sequence typing (MLST) using translation elongation factor 1-alpha (TEF1-α) and RNA polymerase II (RPB2) DNA sequences. The MLST nomenclature for clade 3 of the FSSC assigns numbers to species types (e.g., FSSC 2) and lowercase letters to identify unique haplotypes. The aim of this study was to analyse the genotypic and phenotypic characteristics of 15 environmental and 15 clinical FSSC isolates from Malaysia. MLST was used for the genotypic characterisation of FSSC isolates from various locations within Malaysia, which was complemented by their morphological characterisation on potato dextrose and carnation leaf agar. MLST identified eight different FSSC species: thirteen Fusarium keratoplasticum (i.e., FSSC 2), six Fusarium suttonianum (FSSC 20), five Fusarium falciforme (FSSC 3+4), two Fusarium cyanescens (FSSC 27), and one each of Fusarium petroliphilum (FSSC 1), Fusarium waltergamsii (FSSC 7), Fusarium sp. (FSSC 12), and Fusarium striatum (FSSC 21). Consistent with previous reports from Malaysia, most (11 of 15) clinical FSSC isolates were F. keratoplasticum and the majority (9 of 15) of environmental isolates were F. suttonianum (5) or F. falciforme (4) strains. The taxonomic relationships of the isolates were resolved phylogenetically. The eight Fusarium species also showed distinct morphological characteristics, but these were less clearly defined and reached across species boundaries. Although TEF1-α and RPB2 sequences were sufficient for the species identification of most FSSC isolates, a more precise MLST scheme needs to be established to reliably assign individual isolates of the species-rich FSSC to their geographically-, epidemiologically-, and host-associated sub-lineages.
Collapse
Affiliation(s)
- Jasper E. James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
- Correspondence: ; Tel.: +603-9289-7039
| | - Latiffah Zakaria
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor 11800, Malaysia
| | - Nuraini Mamat Rusli
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Mariahyati Abu Bakar
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| | - Satinee Suetrong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jariya Sakayaroj
- School of Science, Wailalak University, Nakhonsithammarat 80161, Thailand
| | - Mohd Fuat Abdul Razak
- Bacteriology Unit, Institute for Medical Research, National Institute of Health, Shah Alam 40170, Malaysia
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| | - Richard D. Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Vermeulen P, Gruez A, Babin AL, Frippiat JP, Machouart M, Debourgogne A. CYP51 Mutations in the Fusarium solani Species Complex: First Clue to Understand the Low Susceptibility to Azoles of the Genus Fusarium. J Fungi (Basel) 2022; 8:jof8050533. [PMID: 35628788 PMCID: PMC9148147 DOI: 10.3390/jof8050533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 02/05/2023] Open
Abstract
Members of Fusarium solani species complex (FSSC) are cosmopolitan filamentous fungi responsible for invasive fungal infections in immunocompromised patients. Despite the treatment recommendations, many strains show reduced sensitivity to voriconazole. The objective of this work was to investigate the potential relationship between azole susceptibility and mutations in CYP51 protein sequences. Minimal inhibitory concentrations (MICs) for azole antifungals have been determined using the CLSI (Clinical and Laboratory Standards Institute) microdilution method on a panel of clinical and environmental strains. CYP51A, CYP51B and CYP51C genes for each strain have been sequenced using the Sanger method. Amino acid substitutions described in multiple azole-resistant Aspergillus fumigatus (mtrAf) strains have been sought and compared with other Fusarium complexes’ strains. Our results show that FSSC exhibit point mutations similar to those described in mtrAf. Protein sequence alignments of CYP51A, CYP51B and CYP51C have highlighted different profiles based on sequence similarity. A link between voriconazole MICs and protein sequences was observed, suggesting that these mutations could be an explanation for the intrinsic azole resistance in the genus Fusarium. Thus, this innovative approach provided clues to understand low azole susceptibility in FSSC and may contribute to improving the treatment of FSSC infection.
Collapse
Affiliation(s)
- Pierre Vermeulen
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
| | - Arnaud Gruez
- IMoPA, CNRS, Université de Lorraine, F-54000 Nancy, France;
| | - Anne-Lyse Babin
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
| | - Jean-Pol Frippiat
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
| | - Marie Machouart
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
| | - Anne Debourgogne
- Laboratoire Stress Immunité Pathogènes, UR 7300, Faculté de Médecine, Université de Lorraine, 9 Avenue de la Forêt de Haye, F-54500 Vandœuvre-lès-Nancy, France; (P.V.); (A.-L.B.); (J.-P.F.); (M.M.)
- Service de Microbiologie, CHRU de Nancy, Hôpitaux de Brabois, 11 Allée du Morvan, F-54511 Vandœuvre-lès-Nancy, France
- Correspondence: ; Tel.: +33-(0)3-83-15-43-96
| |
Collapse
|
8
|
James JE, Lamping E, Santhanam J, Cannon RD. PDR Transporter ABC1 Is Involved in the Innate Azole Resistance of the Human Fungal Pathogen Fusarium keratoplasticum. Front Microbiol 2021; 12:673206. [PMID: 34149660 PMCID: PMC8211738 DOI: 10.3389/fmicb.2021.673206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/22/2021] [Indexed: 12/30/2022] Open
Abstract
Fusarium keratoplasticum is arguably the most common Fusarium solani species complex (FSSC) species associated with human infections. Invasive fusariosis is a life-threatening fungal infection that is difficult to treat with conventional azole antifungals. Azole drug resistance is often caused by the increased expression of pleiotropic drug resistance (PDR) ATP-binding cassette (ABC) transporters of the ABCG sub-family. Most investigations of Fusarium ABC transporters associated with azole antifungal drug resistance are limited to plant pathogens. Through the manual curation of the entire ABCG protein family of four FSSC species including the fully annotated genome of the plant pathogen Nectria haematococca we identified PDR transporters ABC1 and ABC2 as the efflux pump candidates most likely to be associated with the innate azole resistance phenotype of Fusarium keratoplasticum. An initial investigation of the transcriptional response of logarithmic phase F. keratoplasticum cells to 16 mg/L voriconazole confirmed strong upregulation (372-fold) of ABC1 while ABC2 mRNA levels were unaffected by voriconazole exposure over a 4 h time-period. Overexpression of F. keratoplasticum ABC1 and ABC2 in the genetically modified Saccharomyces cerevisiae host ADΔΔ caused up to ∼1,024-fold increased resistance to a number of xenobiotics, including azole antifungals. Although ABC1 and ABC2 were only moderately (20% and 10%, respectively) expressed compared to the Candida albicans multidrug efflux pump CDR1, overexpression of F. keratoplasticum ABC1 caused even higher resistance levels to certain xenobiotics (e.g., rhodamine 6G and nigericin) than CDR1. Our investigations suggest an important role for ABC1 orthologues in the innate azole resistance phenotype of FSSC species.
Collapse
Affiliation(s)
- Jasper Elvin James
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.,Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Erwin Lamping
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Jacinta Santhanam
- Biomedical Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Richard David Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
A One Health Perspective to Recognize Fusarium as Important in Clinical Practice. J Fungi (Basel) 2020; 6:jof6040235. [PMID: 33092120 PMCID: PMC7711799 DOI: 10.3390/jof6040235] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Any strategy that proposes solutions to health-related problems recognizes that people, animals, and the environment are interconnected. Fusarium is an example of this interaction because it is capable of infecting plants, animals, and humans. This review provides information on various aspects of these relations and proposes how to approach fusariosis with a One Health methodology (a multidisciplinary, and multisectoral approach that can address urgent, ongoing, or potential health threats to humans, animals, and the environment). Here, we give a framework to understand infection pathogenesis, through the epidemiological triad, and explain how the broad utilization of fungicides in agriculture may play a role in the treatment of human fusariosis. We assess how plumbing systems and hospital environments might play a role as a reservoir for animal and human infections. We explain the role of antifungal resistance mechanisms in both humans and agriculture. Our review emphasizes the importance of developing interdisciplinary research studies where aquatic animals, plants, and human disease interactions can be explored through coordination and collaborative actions.
Collapse
|