1
|
Özkale E, Doğan Ö, Budak M, Mahir Korkmaz E. Mitogenome evolution in Trichoderma afroharzianum strains: for a better understanding of distinguishing genus. Genome 2024; 67:139-150. [PMID: 38118129 DOI: 10.1139/gen-2022-0092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Trichoderma afroharzianum (Hypocreales) is known as an important mycoparasite and biocontrol fungus and feeds on fungal material by parasitizing other fungi. Recent studies indicate that this species is also an ear rot pathogen in Europe. Here, the complete mitochondrial genome of three T. afroharzianum strains was sequenced using next-generation sequencing and comparatively characterized by the reported Trichoderma mitogenomes. T. afroharzianum mitogenomes were varying between 29 511 bp and 29 517 bp in length, with an average A + T content of 72.32%. These mitogenomes contain 14 core protein coding genes (PCGs), 22 tRNAs, two rRNAs, one gene encoding the ribosomal protein S3, and three or four genes including conserved domains for the homing endonucleases (HEGs; GIY-YIG type and LAGLIDADG type). All PCGs are initiated by ATG codons, except for atp8, and all are terminated with TAA. A significant correlation was observed between nucleotide composition and codon preference. Four introns belonging to the group I intron class were predicted, accounting for about 14.54% of the size of the mitogenomes. Phylogenetic analyses confirmed the positions of T. afroharzianum strains within the genus of Trichoderma and supported a sister group relationship between T. afroharzianum and T. simmonsii. The recovered trees also supported the monophyly of all included families and of the genus of Acremonium. The characterization of mitochondrial genome of T. afroharzianum contributes to the understanding of phylogeny and evolution of Hypocreales.
Collapse
Affiliation(s)
- Evrim Özkale
- Faculty of Engineering and Natural Sciences, Department of Biology, Manisa Celal Bayar University, Manisa 45140, Turkiye
| | - Özgül Doğan
- Vocational School of Health Services, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Mahir Budak
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| | - Ertan Mahir Korkmaz
- Faculty of Science, Department of Molecular Biology and Genetics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
- Institute of Science, Department of Bioinformatics, Sivas Cumhuriyet University, Sivas 58140, Turkiye
| |
Collapse
|
2
|
Wang Y, Wang J, Zhu X, Wang W. Genome and transcriptome sequencing of Trichoderma harzianum T4, an important biocontrol fungus of Rhizoctonia solani, reveals genes related to mycoparasitism. Can J Microbiol 2024; 70:86-101. [PMID: 38314685 DOI: 10.1139/cjm-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Trichoderma harzianum is a well-known biological control strain and a mycoparasite of Rhizoctonia solani. To explore the mechanisms of mycoparasitism, the genome and transcriptome of T. harzianum T4 were both assembled and analyzed in this study. The genome of T. harzianum T4 was assembled into 106 scaffolds, sized 41.25 Mb, and annotated with a total of 8118 predicted genes. We analyzed the transcriptome of T. harzianum T4 against R. solani in a dual culture in three culture periods: before contact (BC), during contact (C), and after contact (AC). Transcriptome sequencing identified 1092, 1222, and 2046 differentially expressed genes (DEGs), respectively. These DEGs, which are involved in pathogen recognition and signal transduction, hydrolase, transporters, antibiosis, and defense-related functional genes, are significantly upregulated in the mycoparasitism process. The results of genome and transcriptome analysis indicated that the mycoparasitism process of T. harzianum T4 was very complex. T. harzianum successfully recognizes and invades host cells and kills plant pathogens by regulating various DEGs at different culture periods. The relative expression levels of the 26 upregulated DEGs were confirmed by RT-qPCR to validate the reliability of the transcriptome data. The results provide insight into the molecular mechanisms underlying T. harzianum T4's mycoparasitic processes, and they provide a potential molecular target for the biological control mechanism of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Castrillo ML, Bich GÁ, Amerio NS, Barengo MP, Zapata PD, Saparrat MCN, Villalba LL. Trichoderma koningiopsis (Hypocreaceae) has the smallest mitogenome of the genus Trichoderma. Front Microbiol 2023; 14:1141087. [PMID: 37383640 PMCID: PMC10294050 DOI: 10.3389/fmicb.2023.1141087] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/24/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction Fungal mitogenomes exhibit remarkable variation in conformation, size, gene content, arrangement and expression, including their intergenic spacers and introns. Methods The complete mitochondrial genome sequence of the mycoparasitic fungus Trichoderma koningiopsis was determined using the Illumina next-generation sequencing technology. We used data from our recent Illumina NGS-based project of T. koningiopsis genome sequencing to study its mitochondrial genome. The mitogenome was assembled, annotated, and compared with other fungal mitogenomes. Results T. koningiopsis strain POS7 mitogenome is a circular molecule of 27,560 bp long with a GC content of 27.80%. It harbors the whole complement of the 14 conserved mitochondrial protein-coding genes (PCG) such as atp6, atp8, atp9, cox1, cox2, cox3, cob, nad1, nad2, nad3, nad4, nad4L, nad5, and nad6, also found in the same gene order to other Hypocreales. The mitogenome also contains 26 transfer RNA genes (tRNAs), 5 of them with more than one copy. Other genes also present in the assembled mitochondrial genome are a small rRNA subunit and a large rRNA subunit containing ribosomal protein S3 gene. Despite the small genome size, two introns were detected in the T. koningiopsis POS7 mitogenome, one of them in cox3 gene and the other in rnl gene, accounting 7.34% of this mitogenome with a total size of 2,024 bp. A phylogenetic analysis was done using the 14 PCGs genes of T. koningiopsis strain POS7 mitogenome to compare them with those from other fungi of the Subphyla Pezizomycotina and Saccharomycotina. T. koningiopsis strain POS7 was clustered together with other representatives of Trichoderma lineage, within the Hypocreales group, which is also supported by previous phylogenetic studies based on nuclear markers. Discussion The mitochondrial genome of T. koningiopsis POS7 will allow further investigations into the taxonomy, phylogenetics, conservation genetics, and evolutionary biology of this important genus as well as other closely related species.
Collapse
Affiliation(s)
- María Lorena Castrillo
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gustavo Ángel Bich
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Natalia Soledad Amerio
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcela Paola Barengo
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Pedro Darío Zapata
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Mario Carlos Nazareno Saparrat
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Naturales y Museo, Instituto de Botánica Carlos Spegazzini, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
- Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Laura Lidia Villalba
- Laboratorio de Biotecnología Molecular, Instituto de Biotecnología Misiones “Dra. María Ebe Reca”-InBioMis, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
4
|
Himmelstrand K, Brandström Durling M, Karlsson M, Stenlid J, Olson Å. Multiple rearrangements and low inter- and intra-species mitogenome sequence variation in the Heterobasidion annosum s.l. species complex. Front Microbiol 2023; 14:1159811. [PMID: 37275157 PMCID: PMC10234125 DOI: 10.3389/fmicb.2023.1159811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/16/2023] [Indexed: 06/07/2023] Open
Abstract
Introduction Mitochondria are essential organelles in the eukaryotic cells and responsible for the energy production but are also involved in many other functions including virulence of some fungal species. Although the evolution of fungal mitogenomes have been studied at some taxonomic levels there are still many things to be learned from studies of closely related species. Methods In this study, we have analyzed 60 mitogenomes in the five species of the Heterobasidion annosum sensu lato complex that all are necrotrophic pathogens on conifers. Results and Discussion Compared to other fungal genera the genomic and genetic variation between and within species in the complex was low except for multiple rearrangements. Several translocations of large blocks with core genes have occurred between the five species and rearrangements were frequent in intergenic areas. Mitogenome lengths ranged between 108 878 to 116 176 bp, mostly as a result of intron variation. There was a high degree of homology of introns, homing endonuclease genes, and intergenic ORFs among the five Heterobasidion species. Three intergenic ORFs with unknown function (uORF6, uORF8 and uORF9) were found in all five species and was located in conserved synteny blocks. A 13 bp long GC-containing self-complementary palindrome was discovered in many places in the five species that were optional in presence/absence. The within species variation is very low, among 48 H. parviporum mitogenomes, there was only one single intron exchange, and SNP frequency was 0.28% and indel frequency 0.043%. The overall low variation in the Heterobasidion annosum sensu lato complex suggests a slow evolution of the mitogenome.
Collapse
Affiliation(s)
| | | | | | | | - Åke Olson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
5
|
Schalamun M, Schmoll M. Trichoderma - genomes and genomics as treasure troves for research towards biology, biotechnology and agriculture. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:1002161. [PMID: 37746224 PMCID: PMC10512326 DOI: 10.3389/ffunb.2022.1002161] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/25/2022] [Indexed: 09/26/2023]
Abstract
The genus Trichoderma is among the best studied groups of filamentous fungi, largely because of its high relevance in applications from agriculture to enzyme biosynthesis to biofuel production. However, the physiological competences of these fungi, that led to these beneficial applications are intriguing also from a scientific and ecological point of view. This review therefore summarizes recent developments in studies of fungal genomes, updates on previously started genome annotation efforts and novel discoveries as well as efforts towards bioprospecting for enzymes and bioactive compounds such as cellulases, enzymes degrading xenobiotics and metabolites with potential pharmaceutical value. Thereby insights are provided into genomes, mitochondrial genomes and genomes of mycoviruses of Trichoderma strains relevant for enzyme production, biocontrol and mycoremediation. In several cases, production of bioactive compounds could be associated with responsible genes or clusters and bioremediation capabilities could be supported or predicted using genome information. Insights into evolution of the genus Trichoderma revealed large scale horizontal gene transfer, predominantly of CAZyme genes, but also secondary metabolite clusters. Investigation of sexual development showed that Trichoderma species are competent of repeat induced point mutation (RIP) and in some cases, segmental aneuploidy was observed. Some random mutants finally gave away their crucial mutations like T. reesei QM9978 and QM9136 and the fertility defect of QM6a was traced back to its gene defect. The Trichoderma core genome was narrowed down to 7000 genes and gene clustering was investigated in the genomes of multiple species. Finally, recent developments in application of CRISPR/Cas9 in Trichoderma, cloning and expression strategies for the workhorse T. reesei as well as the use genome mining tools for bioprospecting Trichoderma are highlighted. The intriguing new findings on evolution, genomics and physiology highlight emerging trends and illustrate worthwhile perspectives in diverse fields of research with Trichoderma.
Collapse
Affiliation(s)
- Miriam Schalamun
- Center for Health and Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria
| | - Monika Schmoll
- Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Complete Genome Sequences and Genome-Wide Characterization of Trichoderma Biocontrol Agents Provide New Insights into their Evolution and Variation in Genome Organization, Sexual Development, and Fungal-Plant Interactions. Microbiol Spectr 2021; 9:e0066321. [PMID: 34908505 PMCID: PMC8672877 DOI: 10.1128/spectrum.00663-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Trichoderma spp. represent one of the most important fungal genera to mankind and in natural environments. The genus harbors prolific producers of wood-decaying enzymes, biocontrol agents against plant pathogens, plant-growth-promoting biofertilizers, as well as model organisms for studying fungal-plant-plant pathogen interactions. Pursuing highly accurate, contiguous, and chromosome-level reference genomes has become a primary goal of fungal research communities. Here, we report the chromosome-level genomic sequences and whole-genome annotation data sets of four strains used as biocontrol agents or biofertilizers (Trichoderma virens Gv29-8, Trichoderma virens FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1). Our results provide comprehensive categorization, correct positioning, and evolutionary detail of both nuclear and mitochondrial genomes, including telomeres, AT-rich blocks, centromeres, transposons, mating-type loci, nuclear-encoded mitochondrial sequences, as well as many new secondary metabolic and carbohydrate-active enzyme gene clusters. We have also identified evolutionarily conserved core genes contributing to plant-fungal interactions, as well as variations potentially linked to key behavioral traits such as sex, genome defense, secondary metabolism, and mycoparasitism. The genomic resources we provide herein significantly extend our knowledge not only of this economically important fungal genus, but also fungal evolution and basic biology in general. IMPORTANCE Telomere-to-telomere and gapless reference genome assemblies are necessary to ensure that all genomic variants are studied and discovered, including centromeres, telomeres, AT-rich blocks, mating type loci, biosynthetic, and metabolic gene clusters. Here, we applied long-range sequencing technologies to determine the near-completed genome sequences of four widely used biocontrol agents or biofertilizers: Trichoderma virens Gv29-8 and FT-333, Trichoderma asperellum FT-101, and Trichoderma atroviride P1. Like those of three Trichoderma reesei wild isolates [QM6a, CBS999.97(MAT1-1) and CBS999.97(MAT1-2)] we reported previously, these four biocontrol agent genomes each contain seven nuclear chromosomes and a circular mitochondrial genome. Substantial intraspecies and intragenus diversities are also discovered, including single nucleotide polymorphisms, chromosome shuffling, as well as genomic relics derived from historical transposition events and repeat-induced point (RIP) mutations.
Collapse
|
7
|
Kwak Y. An Update on Trichoderma Mitogenomes: Complete De Novo Mitochondrial Genome of the Fungal Biocontrol Agent Trichoderma harzianum (Hypocreales, Sordariomycetes), an Ex-Neotype Strain CBS 226.95, and Tracing the Evolutionary Divergences of Mitogenomes in Trichoderma. Microorganisms 2021; 9:1564. [PMID: 34442643 PMCID: PMC8401334 DOI: 10.3390/microorganisms9081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022] Open
Abstract
Members of the genus Trichoderma (Hypocreales), widely used as biofungicides, biofertilizers, and as model fungi for the industrial production of CAZymes, have actively been studied for the applications of their biological functions. Recently, the study of the nuclear genomes of Trichoderma has expanded in the directions of adaptation and evolution to gain a better understanding of their ecological traits. However, Trichoderma's mitochondria have received much less attention despite mitochondria being the most necessary element for sustaining cell life. In this study, a mitogenome of the fungus Trichoderma harzianum CBS 226.95 was assembled de novo. A 27,632 bp circular DNA molecule was revealed with specific features, such as the intronless of all core PCGs, one homing endonuclease, and a putative overlapping tRNA, on a closer phylogenetic relationship with T. reesei among hypocrealean fungi. Interestingly, the mitogenome of T. harzianum CBS 226.95 was predicted to have evolved earlier than those of other Trichoderma species and also assumed with a selection pressure in the cox3. Considering the bioavailability, both for the ex-neotype strain of the T. harzianum species complex and the most globally representative commercial fungal biocontrol agent, our results on the T. harzianum CBS 226.95 mitogenome provide crucial information which will be helpful criteria in future studies on Trichoderma.
Collapse
Affiliation(s)
- Yunyoung Kwak
- Écologie, Systématique et Évolution, CNRS, Université Paris Sud (Paris XI), Université Paris Saclay, AgroParisTech, 91400 Orsay, France;
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Institute for Quality and Safety Assessment of Agricultural Products, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|