1
|
Quiñones B, Lee BG, Avilés Noriega A, Gorski L. Plasmidome of Salmonella enterica serovar Infantis recovered from surface waters in a major agricultural region for leafy greens in California. PLoS One 2024; 19:e0316466. [PMID: 39775564 PMCID: PMC11684603 DOI: 10.1371/journal.pone.0316466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Non-typhoidal Salmonella enterica is a leading cause of gastrointestinal illnesses in the United States. Among the 2,600 different S. enterica serovars, Infantis has been significantly linked to human illnesses and is frequently recovered from broilers and chicken parts in the U.S. A key virulence determinant in serovar Infantis is the presence of the megaplasmid pESI, conferring multidrug resistance. To further characterize the virulence potential of this serovar, the present study identified the types of plasmids harbored by Infantis strains, recovered from surface waters adjacent to leafy greens farms in California. Sequencing analysis showed that each of the examined 12 Infantis strains had a large plasmid ranging in size from 78 kb to 125 kb. In addition, a second 4-kb plasmid was detected in two strains. Plasmid nucleotide queries did not identify the emerging megaplasmid pESI in the examined Infantis strains; however, the detected plasmids each had similarity to a plasmid sequence already cataloged in the nucleotide databases. Subsequent comparative analyses, based on gene presence or absence, divided the detected plasmids into five distinct clusters, and the phylogram revealed these Infantis plasmids were clustered based either on the plasmid conjugation system, IncI and IncF, or on the presence of plasmid phage genes. Assignment of the putative genes to functional categories revealed that the large plasmids contained genes implicated in cell cycle control and division, replication and recombination and defense mechanisms. Further analysis of the mobilome, including prophages and transposons, demonstrated the presence of genes implicated in the release of the bactericidal peptide microcin in the IncF plasmids and identified a Tn10 transposon conferring tetracycline resistance in one of the IncI1 plasmids. These findings indicated that the plasmids in the environmental S. enterica serovar Infantis strains from surface waters harbored a wide variety of genes associated with adaptation, survivability and antimicrobial resistance.
Collapse
Affiliation(s)
- Beatriz Quiñones
- Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Bertram G. Lee
- Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Ashley Avilés Noriega
- Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| | - Lisa Gorski
- Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America
| |
Collapse
|
2
|
Fang L, Chen R, Li C, Sun J, Liu R, Shen Y, Guo X. The association between the genetic structures of commonly incompatible plasmids in Gram-negative bacteria, their distribution and the resistance genes. Front Cell Infect Microbiol 2024; 14:1472876. [PMID: 39660283 PMCID: PMC11628540 DOI: 10.3389/fcimb.2024.1472876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
Incompatible plasmids play a crucial role in the horizontal transfer of antibiotic resistance in bacteria, particularly in Gram-negative bacteria, and have thus attracted considerable attention in the field of microbiological research. In the 1970s, these plasmids, housing an array of resistance genes and genetic elements, were predominantly discovered. They exhibit a broad presence in diverse host bacteria, showcasing diversity in geographic distribution and the spectrum of antibiotic resistance genes. The complex genetic structure of plasmids further accelerates the accumulation of resistance genes in Gram-negative bacteria. This article offers a comprehensive review encompassing the discovery process, host distribution, geographic prevalence, carried resistance genes, and the genetic structure of different types incompatible plasmids, including IncA, IncC, IncF, IncL, IncM, IncH, and IncP. It serves as a valuable reference for enhancing our understanding of the role of these different types of plasmids in bacterial evolution and the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Lei Fang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chenyu Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhao Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobing Guo
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Rizzo NN, Núncio ASP, Levandowski R, Nascimento CAD, Borges KA, Furian TQ, Ruschel Dos Santos L, Pilotto F, Rodrigues LB, Nascimento VP. Whole genome analysis of Salmonella Gallinarum strains isolated from a fowl typhoid outbreak in southern Brazil. Br Poult Sci 2024:1-6. [PMID: 39257343 DOI: 10.1080/00071668.2024.2394973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/11/2024] [Indexed: 09/12/2024]
Abstract
1. Salmonella Gallinarum strains isolated from a southern Brazil fowl typhoid outbreak were subjected to phenotypic and genotypic analyses to identify genetic elements that could improve prevention and control strategies.2. Whole-genome sequencing revealed the presence of the aac(6')-Iaa gene, conferring aminoglycoside resistance, along with novel chromosomal point mutations, including the first detection of parE p.S451F in Salmonella Gallinarum.3. Additionally, IncFII(S) plasmid replicons, Salmonella pathogenicity islands and 105 virulence genes associated with cell adhesion, invasion and antimicrobial peptide resistance were identified.4. These findings shed light on the molecular mechanisms of fowl typhoid and provide crucial insights into emerging antimicrobial resistance and virulence factors.
Collapse
Affiliation(s)
- N N Rizzo
- Graduate Program in Veterinary Science, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - A S P Núncio
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - R Levandowski
- School of Agricultural Sciences, Innovation and Business, University of Passo Fundo, Passo Fundo, Brazil
| | - C A D Nascimento
- School of Agricultural Sciences, Innovation and Business, University of Passo Fundo, Passo Fundo, Brazil
| | - K A Borges
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - T Q Furian
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - L Ruschel Dos Santos
- School of Agricultural Sciences, Innovation and Business, University of Passo Fundo, Passo Fundo, Brazil
| | - F Pilotto
- School of Agricultural Sciences, Innovation and Business, University of Passo Fundo, Passo Fundo, Brazil
| | - L B Rodrigues
- School of Agricultural Sciences, Innovation and Business, University of Passo Fundo, Passo Fundo, Brazil
| | - V P Nascimento
- Faculty of Veterinary Medicine, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Oxendine A, Walsh AA, Young T, Dixon B, Hoke A, Rogers EE, Lee MD, Maurer JJ. Conditions Necessary for the Transfer of Antimicrobial Resistance in Poultry Litter. Antibiotics (Basel) 2023; 12:1006. [PMID: 37370325 DOI: 10.3390/antibiotics12061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Animal manures contain a large and diverse reservoir of antimicrobial resistance (AMR) genes that could potentially spillover into the general population through transfer of AMR to antibiotic-susceptible pathogens. The ability of poultry litter microbiota to transmit AMR was examined in this study. Abundance of phenotypic AMR was assessed for litter microbiota to the antibiotics: ampicillin (Ap; 25 μg/mL), chloramphenicol (Cm; 25 μg/mL), streptomycin (Sm; 100 μg/mL), and tetracycline (Tc; 25 μg/mL). qPCR was used to estimate gene load of streptomycin-resistance and sulfonamide-resistance genes aadA1 and sul1, respectively, in the poultry litter community. AMR gene load was determined relative to total bacterial abundance using 16S rRNA qPCR. Poultry litter contained 108 CFU/g, with Gram-negative enterics representing a minor population (<104 CFU/g). There was high abundance of resistance to Sm (106 to 107 CFU/g) and Tc (106 to 107 CFU/g) and a sizeable antimicrobial-resistance gene load in regards to gene copies per bacterial genome (aadA1: 0.0001-0.0060 and sul1: 0.0355-0.2455). While plasmid transfer was observed from Escherichia coli R100, as an F-plasmid donor control, to the Salmonella recipient in vitro, no AMR Salmonella were detected in a poultry litter microcosm with the inclusion of E. coli R100. Confirmatory experiments showed that isolated poultry litter bacteria were not interfering with plasmid transfer in filter matings. As no R100 transfer was observed at 25 °C, conjugative plasmid pRSA was chosen for its high plasmid transfer frequency (10-4 to 10-5) at 25 °C. While E. coli strain background influenced the persistence of pRSA in poultry litter, no plasmid transfer to Salmonella was ever observed. Although poultry litter microbiota contains a significant AMR gene load, potential to transmit resistance is low under conditions commonly used to assess plasmid conjugation.
Collapse
Affiliation(s)
- Aaron Oxendine
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Allison A Walsh
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Tamesha Young
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Brandan Dixon
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Alexa Hoke
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Eda Erdogan Rogers
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - Margie D Lee
- Department of Biomedical Science and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| | - John J Maurer
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
5
|
Russo I, Bencardino D, Napoleoni M, Andreoni F, Schiavano GF, Baldelli G, Brandi G, Amagliani G. Prevalence, Antibiotic-Resistance, and Replicon-Typing of Salmonella Strains among Serovars Mainly Isolated from Food Chain in Marche Region, Italy. Antibiotics (Basel) 2022; 11:antibiotics11060725. [PMID: 35740132 PMCID: PMC9219957 DOI: 10.3390/antibiotics11060725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Nontyphoidal salmonellosis (NTS) is the second most commonly reported gastrointestinal infection in humans and an important cause of food-borne outbreaks in Europe. The use of antimicrobial agents for animals, plants, and food production contributes to the development of antibiotic-resistant Salmonella strains that are transmissible to humans through food. The aim of this study was to investigate the presence and the potential dissemination of multidrug-resistant (MDR) Salmonella strains isolated in the Marche Region (Central Italy) via the food chain. Strains were isolated from different sources: food, human, food animal/livestock, and the food-processing environment. Among them, we selected MDR strains to perform their further characterization in terms of resistance to tetracycline agent, carriage of tet genes, and plasmid profiles. Tetracycline resistance genes were detected by PCR and plasmid replicons by PCR-based replicon typing (PBRT). A total of 102 MDR Salmonella strains were selected among the most prevalent serovars: S. Infantis (n = 36/102), S. Derby (n = 20/102), S. Typhimurium (n = 18/102), and a monophasic variant of S. Typhimurium (MVST, n = 28/102). Resistance to sulfisoxazole (86%) and tetracycline (81%) were the most common, followed by ampicillin (76%). FIIS was the most predominant replicon (17%), followed by FII (11%) and FIB (11%) belonging to the IncF incompatibility group. Concerning the characterization of tet genes, tetB was the most frequently detected (27/89), followed by tetA (10/89), tetG (5/89), and tetM (1/89). This study showed the potential risk associated with the MDR Salmonella strains circulating along the food chain. Hence, epidemiological surveillance supported by molecular typing could be a very useful tool to prevent transmission of resistant Salmonella from food to humans, in line with the One Health approach.
Collapse
Affiliation(s)
- Ilaria Russo
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Maira Napoleoni
- Istituto Zooprofilattico Sperimentale dell’Umbria e Delle Marche “Togo Rosati”, 06126 Perugia, Italy;
| | - Francesca Andreoni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | | | - Giulia Baldelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Giorgio Brandi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
| | - Giulia Amagliani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (I.R.); (D.B.); (F.A.); (G.B.); (G.B.)
- Correspondence: ; Tel.: +39-0722-303540
| |
Collapse
|
6
|
Szmolka A, Wami H, Dobrindt U. Comparative Genomics of Emerging Lineages and Mobile Resistomes of Contemporary Broiler Strains of Salmonella Infantis and E. coli. Front Microbiol 2021; 12:642125. [PMID: 33717039 PMCID: PMC7947892 DOI: 10.3389/fmicb.2021.642125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Introduction Commensal and pathogenic strains of multidrug-resistant (MDR) Escherichia coli and non-typhoid strains of Salmonella represent a growing foodborne threat from foods of poultry origin. MDR strains of Salmonella Infantis and E. coli are frequently isolated from broiler chicks and the simultaneous presence of these two enteric bacterial species would potentially allow the exchange of mobile resistance determinants. Objectives In order to understand possible genomic relations and to obtain a first insight into the potential interplay of resistance genes between enteric bacteria, we compared genomic diversity and mobile resistomes of S. Infantis and E. coli from broiler sources. Results The core genome MLST analysis of 56 S. Infantis and 90 E. coli contemporary strains revealed a high genomic heterogeneity of broiler E. coli. It also allowed the first insight into the genomic diversity of the MDR clone B2 of S. Infantis, which is endemic in Hungary. We also identified new MDR lineages for S. Infantis (ST7081 and ST7082) and for E. coli (ST8702 and ST10088). Comparative analysis of antibiotic resistance genes and plasmid types revealed a relatively narrow interface between the mobile resistomes of E. coli and S. Infantis. The mobile resistance genes tet(A), aadA1, and sul1 were identified at an overall high prevalence in both species. This gene association is characteristic to the plasmid pSI54/04 of the epidemic clone B2 of S. Infantis. Simultaneous presence of these genes and of IncI plasmids of the same subtype in cohabitant caecal strains of E. coli and S. Infantis suggests an important role of these plasmid families in a possible interplay of resistance genes between S. Infantis and E. coli in broilers. Conclusion This is the first comparative genomic analysis of contemporary broiler strains of S. Infantis and E. coli. The diversity of mobile resistomes suggests that commensal E. coli could be potential reservoirs of resistance for S. Infantis, but so far only a few plasmid types and mobile resistance genes could be considered as potentially exchangeable between these two species. Among these, IncI1 plasmids could make the greatest contribution to the microevolution and genetic interaction between E. coli and S. Infantis.
Collapse
Affiliation(s)
- Ama Szmolka
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Budapest, Hungary
| | - Haleluya Wami
- Institute of Hygiene, University of Münster, Münster, Germany
| | - Ulrich Dobrindt
- Institute of Hygiene, University of Münster, Münster, Germany
| |
Collapse
|
7
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|