1
|
Randhawa A, Sinha T, Das M, Yazdani SS. AMPK Activates Cellulase Secretion in Penicillium funiculosum by Downregulating P-HOG1 MAPK Levels. J Basic Microbiol 2024:e2400658. [PMID: 39702928 DOI: 10.1002/jobm.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024]
Abstract
Cellulase production for hydrolyzing plant cell walls is energy-intensive in filamentous fungi during nutrient scarcity. AMP-activated protein kinase (AMPK), encoded by snf1, is known to be the nutrient and energy sensor in eukaryotes. Previous studies on AMPK identified its role in alternate carbon utilization in pathogenic fungi. However, the precise role of AMPK in cellulase production remains elusive. In the present study, we employed gene-deletion analysis, quantitative proteomics and chemical-genetic approaches to investigate the role of AMPK in cellulase synthesis in Penicillium funiculosum. Gene-deletion analysis revealed that AMPK does not promote transcription and translation but is essential for cellulase secretion in a calcium-dependent manner. Proteomic analysis of the snf1-deleted (Δsnf1) strain confirmed trapped cellulase inside the mycelia and identified HOG1 MAPK activation as the most significant Ca2+-induced signaling event during carbon stress in Δsnf1. Western blot analysis analysis revealed that the phosphorylated HOG1 (P-HOG1)/HOG1 MAPK ratio maintained by Ca2+-signaling/Ca2+-activated AMPK, respectively, forms a secretion checkpoint for cellulases, and disturbing this equilibrium blocks cellulase secretion. The proteomic analysis also indicated a massive increase in mTORC1-activated anabolic pathways during carbon stress in Δsnf1. Our study suggests that AMPK maintains homeostasis by acting as a global repressor during carbon stress.
Collapse
Affiliation(s)
- Anmoldeep Randhawa
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Microbiology, Amity University Punjab, Mohali, India
| | - Tulika Sinha
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Maitreyee Das
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Syed Shams Yazdani
- Microbial Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
2
|
Li W, Zou G, Bao D, Wu Y. Current Advances in the Functional Genes of Edible and Medicinal Fungi: Research Techniques, Functional Analysis, and Prospects. J Fungi (Basel) 2024; 10:311. [PMID: 38786666 PMCID: PMC11121823 DOI: 10.3390/jof10050311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.
Collapse
Affiliation(s)
- Wenyun Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Gen Zou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
| | - Dapeng Bao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (W.L.); (G.Z.)
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|
3
|
Wen H, Meng S, Xie S, Shi H, Qiu J, Jiang N, Kou Y. Sucrose non-fermenting protein kinase gene UvSnf1 is required for virulence in Ustilaginoidea virens. Virulence 2023; 14:2235460. [PMID: 37450576 PMCID: PMC10351473 DOI: 10.1080/21505594.2023.2235460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is becoming one of the most devastating diseases in rice production areas in the world. Revealing U. virens potential pathogenic mechanisms provides ideas for formulating more effective prevention and control strategies. Sucrose non-fermenting 1 (Snf1) protein kinase plays a critical role in activating transcription and suppressing gene expression, as well as in cellular response to various stresses, such as nutrient limitation. In our study, we identified the Snf1 homolog UvSnf1 and analyzed its biological functions in U. virens. The expression level of UvSnf1 was dramatically up-regulated during invasion, indicating that UvSnf1 may participate in infection. Phenotypic analyses of UvSnf1 deletion mutants revealed that UvSnf1 is necessary for hyphae growth, spore production, and virulence in U. virens. Moreover, UvSnf1 promotes U. virens to use unfavorable carbon sources when the sucrose is insufficient. In addition, deletion of UvSnf1 down-regulates the expression of the cell wall-degrading enzymes (CWDEs) genes under sucrose limitation conditions in U. virens. Further analyses showed that CWDEs (UvCut1 and UvXyp1) are not only involved in growth, spore production, and virulence but are also required for the utilization of carbon sources. In conclusion, this study demonstrates that UvSnf1 plays vital roles in virulence and carbon source utilization in U. virens, and one of the possible mechanisms is playing a role in regulating the expression of CWDE genes.
Collapse
Affiliation(s)
- Hui Wen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuai Meng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Shuwei Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Nan Jiang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Yanjun Kou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
4
|
Zhang T, Li HZ, Li WT, Tian D, Ning YN, Liang X, Tan J, Zhao YH, Luo XM, Feng JX, Zhao S. Kinase POGSK-3β modulates fungal plant polysaccharide-degrading enzyme production and development. Appl Microbiol Biotechnol 2023; 107:3605-3620. [PMID: 37119203 DOI: 10.1007/s00253-023-12548-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
The filamentous fungus Penicillium oxalicum secretes integrative plant polysaccharide-degrading enzymes (PPDEs) applicable to biotechnology. Glycogen synthase kinase-3β (GSK-3β) mediates various cellular processes in eukaryotic cells, but the regulatory mechanisms of PPDE biosynthesis in filamentous fungi remain poorly understood. In this study, POGSK-3β (POX_c04478), a homolog of GSK-3β in P. oxalicum, was characterised using biochemical, microbiological and omics approaches. Knockdown of POGSK-3β in P. oxalicum using a copper-responsive promoter replacement system led to 53.5 - 63.6%, 79.0 - 92.8% and 76.8 - 94.7% decreases in the production of filter paper cellulase, soluble starch-degrading enzyme and raw starch-degrading enzyme, respectively, compared with the parental strain ΔKu70. POGSK-3β promoted mycelial growth and conidiation. Transcriptomic profiling and real-time quantitative reverse transcription PCR analyses revealed that POGSK-3β dynamically regulated the expression of genes encoding major PPDEs, as well as fungal development-associated genes. The results broadened our understanding of the regulatory functions of GKS-3β and provided a promising target for genetic engineering to improve PPDE production in filamentous fungi. KEY POINTS: • The roles of glycogen synthase kinase-3β were investigated in P. oxalicum. • POGSK-3β regulated PPDE production, mycelial growth and conidiation. • POGSK-3β controlled the expression of major PPDE genes and regulatory genes.
Collapse
Affiliation(s)
- Ting Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, 530200, Guangxi, China
| | - Han-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wen-Tong Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Di Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuan-Ni Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jing Tan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yan-Hao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xue-Mei Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Jia-Xun Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Shuai Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
5
|
Wang L, Liu Q, Ge S, Liang W, Liao W, Li W, Jiao G, Wei X, Shao G, Xie L, Sheng Z, Hu S, Tang S, Hu P. Genomic footprints related with adaptation and fumonisins production in Fusarium proliferatum. Front Microbiol 2022; 13:1004454. [PMID: 36212817 PMCID: PMC9532532 DOI: 10.3389/fmicb.2022.1004454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Fusarium proliferatum is the principal etiological agent of rice spikelet rot disease (RSRD) in China, causing yield losses and fumonisins contamination in rice. The intraspecific variability and evolution pattern of the pathogen is poorly understood. Here, we performed whole-genome resequencing of 67 F. proliferatum strains collected from major rice-growing regions in China. Population structure indicated that eastern population of F. proliferatum located in Yangtze River with the high genetic diversity and recombinant mode that was predicted as the putative center of origin. Southern population and northeast population were likely been introduced into local populations through gene flow, and genetic differentiation between them might be shaped by rice-driven domestication. A total of 121 distinct genomic loci implicated 85 candidate genes were suggestively associated with variation of fumonisin B1 (FB1) production by genome-wide association study (GWAS). We subsequently tested the function of five candidate genes (gabap, chsD, palA, hxk1, and isw2) mapped in our association study by FB1 quantification of deletion strains, and mutants showed the impact on FB1 production as compared to the wide-type strain. Together, this is the first study to provide insights into the evolution and adaptation in natural populations of F. proliferatum on rice, as well as the complex genetic architecture for fumonisins biosynthesis.
Collapse
|
6
|
Abstract
AbstractAscomycetes belonging to the order Sordariales are a well-known reservoir of secondary metabolites with potential beneficial applications. Species of the Sordariales are ubiquitous, and they are commonly found in soils and in lignicolous, herbicolous, and coprophilous habitats. Some of their species have been used as model organisms in modern fungal biology or were found to be prolific producers of potentially useful secondary metabolites. However, the majority of sordarialean species are poorly studied. Traditionally, the classification of the Sordariales has been mainly based on morphology of the ascomata, ascospores, and asexual states, characters that have been demonstrated to be homoplastic by modern taxonomic studies based on multi-locus phylogeny. Herein, we summarize for the first time relevant information about the available knowledge on the secondary metabolites and the biological activities exerted by representatives of this fungal order, as well as a current outlook of the potential opportunities that the recent advances in omic tools could bring for the discovery of secondary metabolites in this order.
Collapse
|
7
|
Shen L, Chapeland-Leclerc F, Ruprich-Robert G, Chen Q, Chen S, Adnan M, Wang J, Liu G, Xie N. Involvement of VIVID in white light-responsive pigmentation, sexual development and sterigmatocystin biosynthesis in the filamentous fungus Podospora anserina. Environ Microbiol 2022; 24:2907-2923. [PMID: 35315561 DOI: 10.1111/1462-2920.15978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/15/2022] [Indexed: 11/29/2022]
Abstract
Light serves as a source of information and regulates diverse physiological processes in living organisms. Fungi perceive and respond to light through a complex photosensory system. Fungi have evolved the desensitization mechanism to adapt to the changing light signal in a natural environment. White light exerts multiple essential impacts on the model filamentous fungus P. anserina. However, the light sensing and response in this species has not been investigated. In this study, we demonstrated that the loss of function of the light desensitization protein VIVID (VVD) in P. anserina triggered exacerbated light responses, and therefore led to drastic morphological and physiological changes. The white light-sensitive mutant Δvvd showed growth reduction, spermatia overproduction, enhanced hyphae pigmentation and reduced oxidative stress tolerance. We observed the decreased expression level of sterigmatocystin gene cluster by transcriptome analysis, and finally detected the reduced production of sterigmatocystin in Δvvd in response to white light. Our data indicate that VVD acts as a repressor of white collar complex. This study exhibits a vital role of VVD in governing white light-responsive gene expression and secondary metabolite production, and contributes to a better understanding of the photoreceptor VVD in P. anserina. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ling Shen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Florence Chapeland-Leclerc
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Gwenaël Ruprich-Robert
- Laboratoire Interdisciplinaire des Energies de Demain (LIED), Université de Paris, CNRS UMR 8236, F-75013, Paris, France
| | - Qiyi Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Siyu Chen
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| | - Ning Xie
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
8
|
Lengyel S, Rascle C, Poussereau N, Bruel C, Sella L, Choquer M, Favaron F. Snf1 Kinase Differentially Regulates Botrytis cinerea Pathogenicity according to the Plant Host. Microorganisms 2022; 10:microorganisms10020444. [PMID: 35208900 PMCID: PMC8877277 DOI: 10.3390/microorganisms10020444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/04/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Snf1 kinase of the glucose signaling pathway controls the response to nutritional and environmental stresses. In phytopathogenic fungi, Snf1 acts as a global activator of plant cell wall degrading enzymes that are major virulence factors for plant colonization. To characterize its role in the virulence of the necrotrophic fungus Botrytis cinerea, two independent deletion mutants of the Bcsnf1 gene were obtained and analyzed. Virulence of the Δsnf1 mutants was reduced by 59% on a host with acidic pH (apple fruit) and up to 89% on hosts with neutral pH (cucumber cotyledon and French bean leaf). In vitro, Δsnf1 mutants grew slower than the wild type strain at both pH 5 and 7, with a reduction of 20–80% in simple sugars, polysaccharides, and lipidic carbon sources, and these defects were amplified at pH 7. A two-fold reduction in secretion of xylanase activities was observed consequently to the Bcsnf1 gene deletion. Moreover, Δsnf1 mutants were altered in their ability to control ambient pH. Finally, Δsnf1 mutants were impaired in asexual sporulation and did not produce macroconidia. These results confirm the importance of BcSnf1 in pathogenicity, nutrition, and conidiation, and suggest a role in pH regulation for this global regulator in filamentous fungi.
Collapse
Affiliation(s)
- Szabina Lengyel
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christine Rascle
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Nathalie Poussereau
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Christophe Bruel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
| | - Luca Sella
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
- Correspondence: (L.S.); (M.C.)
| | - Mathias Choquer
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Bayer SAS, INSA Lyon, UMR5240, Microbiologie, Adaptation et Pathogénie, 14 Impasse Pierre Baizet, F-69263 Lyon, France; (C.R.); (N.P.); (C.B.)
- Correspondence: (L.S.); (M.C.)
| | - Francesco Favaron
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy; (S.L.); (F.F.)
| |
Collapse
|
9
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. SNF1β-Modulated Glucose Uptake and the Balance between Polyunsaturated Fatty Acids and Carbohydrates in Mortierella alpina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13849-13858. [PMID: 34779198 DOI: 10.1021/acs.jafc.1c05971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A sucrose nonfermenting protein kinase 1 (SNF1) complex is an important metabolic regulator in fungi that is critical to cell metabolism and stress response. In this study, the role of an SNF1 β-subunit in the oleaginous fungus Mortierella alpina (MaSip2) was investigated. The MaSip2 contained a glycogen-binding domain and a conserved SNF1-complex interaction region; its transcriptional level during lipogenesis shared high consistency with a previously reported SNF1 γ-subunit (MaSnf4). Overexpression of MaSip2 in M. alpina significantly promoted glucose uptake and resulted in 34.1% increased total biomass, leading to 44.8% increased arachidonic acid yield after 7 day fermentation. MaSip2 also regulated the balance between polyunsaturated fatty acids and carbohydrates in M. alpina. Intracellular metabolite analysis revealed increased carbohydrate-related metabolite accumulation in MaSip2 overexpression strains. On the contrary, knockdown of MaSip2 increased the total fatty acid unsaturation degree, especially under low-temperature conditions. This research improved our knowledge of SNF1 complex in M. alpina and provided a target gene for enhancing glucose utilization and modulating fatty acid composition for better application of oleaginous fungi.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
10
|
Heinz D, Krotova E, Hamann A, Osiewacz HD. Simultaneous Ablation of the Catalytic AMPK α-Subunit SNF1 and Mitochondrial Matrix Protease CLPP Results in Pronounced Lifespan Extension. Front Cell Dev Biol 2021; 9:616520. [PMID: 33748105 PMCID: PMC7969656 DOI: 10.3389/fcell.2021.616520] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/27/2021] [Indexed: 12/21/2022] Open
Abstract
Organismic aging is known to be controlled by genetic and environmental traits. Pathways involved in the control of cellular metabolism play a crucial role. Previously, we identified a role of PaCLPP, a mitochondrial matrix protease, in the control of the mitochondrial energy metabolism, aging, and lifespan of the fungal aging model Podospora anserina. Most surprisingly, we made the counterintuitive observation that the ablation of this component of the mitochondrial quality control network leads to lifespan extension. In the current study, we investigated the role of energy metabolism of P. anserina. An age-dependent metabolome analysis of the wild type and a PaClpP deletion strain verified differences and changes of various metabolites in cultures of the PaClpP mutant and the wild type. Based on these data, we generated and analyzed a PaSnf1 deletion mutant and a ΔPaSnf1/ΔPaClpP double mutant. In both mutants PaSNF1, the catalytic α-subunit of AMP-activated protein kinase (AMPK) is ablated. PaSNF1 was found to be required for the development of fruiting bodies and ascospores and the progeny of sexual reproduction of this ascomycete and impact mitochondrial dynamics and autophagy. Most interestingly, while the single PaSnf1 deletion mutant is characterized by a slight lifespan increase, simultaneous deletion of PaSnf1 and PaClpP leads to a pronounced lifespan extension. This synergistic effect is strongly reinforced in the presence of the mating-type "minus"-linked allele of the rmp1 gene. Compared to the wild type, culture temperature of 35°C instead of the standard laboratory temperature of 27°C leads to a short-lived phenotype of the ΔPaSnf1/ΔPaClpP double mutant. Overall, our study provides novel evidence for complex interactions of different molecular pathways involved in mitochondrial quality control, gene expression, and energy metabolism in the control of organismic aging.
Collapse
Affiliation(s)
| | | | | | - Heinz D. Osiewacz
- Institute of Molecular Biosciences, J.W. Goethe University, Frankfurt am Main, Germany
| |
Collapse
|