1
|
Liu Y, Yuan J, Li Y, Bi Y, Prusky DB. The sensor protein AaSho1 regulates infection structures differentiation, osmotic stress tolerance and virulence via MAPK module AaSte11-AaPbs2-AaHog1 in Alternaria alternata. Comput Struct Biotechnol J 2024; 23:1594-1607. [PMID: 38680872 PMCID: PMC11047198 DOI: 10.1016/j.csbj.2024.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
The high-osmolarity-sensitive protein Sho1 functions as a key membrane receptor in phytopathogenic fungi, which can sense and respond to external stimuli or stresses, and synergistically regulate diverse fungal biological processes through cellular signaling pathways. In this study, we investigated the biological functions of AaSho1 in Alternaria alternata, the causal agent of pear black spot. Targeted gene deletion revealed that AaSho1 is essential for infection structure differentiation, response to external stresses and synthesis of secondary metabolites. Compared to the wild-type (WT), the ∆AaSho1 mutant strain showed no significant difference in colony growth, morphology, conidial production and biomass accumulation. However, the mutant strain exhibited significantly reduced levels of melanin production, cellulase (CL) and ploygalacturonase (PG) activities, virulence, resistance to various exogenous stresses. Moreover, the appressorium and infection hyphae formation rates of the ∆AaSho1 mutant strain were significantly inhibited. RNA-Seq results showed that there were four branches including pheromone, cell wall stress, high osmolarity and starvation in the Mitogen-activated Protein Kinase (MAPK) cascade pathway. Furthermore, yeast two-hybrid experiments showed that AaSho1 activates the MAPK pathway via AaSte11-AaPbs2-AaHog1. These results suggest that AaSho1 of A. alternata is essential for fungal development, pathogenesis and osmotic stress response by activating the MAPK cascade pathway via Sho1-Ste11-Pbs2-Hog1.
Collapse
Affiliation(s)
- Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Jing Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov B. Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Institute of Postharvest and Food Sciences, Agricultural Research Organization Volcani Center Information Center, Rishon LeZion, Israel
| |
Collapse
|
2
|
Yang Y, Xie P, Nan Y, Xu X, Yuan J, Li Y, Bi Y, Prusky D. Transcriptome Analysis Provides Insights into the Mechanism of the Transcription Factor AaCrz1 Regulating the Infection Structure Formation of Alternaria alternata Induced by Pear Peel Wax Signal. Int J Mol Sci 2024; 25:11950. [PMID: 39596020 PMCID: PMC11593592 DOI: 10.3390/ijms252211950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Alternaria alternata, a causal agent of pear black spot, can recognize and respond to physicochemical signals from fruit surfaces through an intricate signaling network to initiate infection. Crz1 is an important transcription factor downstream of the calcium signaling pathway. In this study, we first investigated the infection structure formation process of the wild type (WT) and ΔAaCrz1 strains induced by the cuticular wax of the "Zaosu" pear by microscopic observation. We found that the infection process was delayed and the rate of appressorium formation and infection hyphae formation was significantly decreased in the ΔAaCrz1 strain. RNA-seq of WT and ΔAaCrz1 strains was analyzed after 6 h of induction with pear wax. A total of 893 up-regulated and 534 down-regulated genes were identified. Among them, genes related to cell wall degrading enzymes, ABC transporters, and ion homeostasis were down-regulated, and the autophagy pathway was induced and activated. In addition, disruption to the intracellular antioxidant system was also found after AaCrz1 knockdown. In summary, this study provides new information on the mechanism of the transcription factor AaCrz1 in the regulation of infection structure formation of A. alternata induced by pear peel wax signal, which can be used to develop new strategies for controlling fungal diseases in the future.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yuanping Nan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Jing Yuan
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China; (Y.Y.); (P.X.); (Y.N.); (X.X.); (J.Y.); (Y.B.)
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| |
Collapse
|
3
|
Li R, Li Y, Xu W, Liu W, Xu X, Bi Y, Prusky D. Aabrm1-mediated melanin synthesis is essential to growth and development, stress adaption, and pathogenicity in Alternaria alternata. Front Microbiol 2024; 14:1327765. [PMID: 38274752 PMCID: PMC10808324 DOI: 10.3389/fmicb.2023.1327765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Scytalone dehydratase (brm1) is one of the key enzymes in 1, 8-dihydroxynaphthalene (DHN) melanin synthesis, which mediates melanin biosythesis and regulates cell biological process of plant fungi, but its function in Alternaria alternata, the causal agent of pear black spot, is unclear. Brm1 in A. alternata was cloned, identified, and named as Aabrm1. An Aabrm1-deletion mutant was generated and revealed that the deletion of Aabrm1 leads to a significant decrease in melanin production and forms orange colony smooth spores. In addition, the deletion of Aabrm1 gene impaired infection structure information and penetration. The external stress resistance of ΔAabrm1 was significantly weakened, and, in particular, it is very sensitive to oxidative stress, and the contents of H2O2 and O2.- in ΔAabrm1 were significantly increased. Virulence of ΔAabrm1 was reduced in non-wound-inoculated pear leaves but not changed in wound-inoculated pear fruit. These results indicated that Aabrm1-mediated melanin synthesis plays an important role in the pathogenicity of A. alternata.
Collapse
Affiliation(s)
- Rong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wenyi Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Wenjuan Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Xu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Bet Dagan, Israel
| |
Collapse
|
4
|
Baruah D, Tamuli R. The cell functions of phospholipase C-1, Ca 2+/H + exchanger-1, and secretory phospholipase A 2 in tolerance to stress conditions and cellulose degradation in Neurospora crassa. Arch Microbiol 2023; 205:327. [PMID: 37676310 DOI: 10.1007/s00203-023-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
We investigated the cell functions of the Ca2+ signaling genes phospholipase C-1 (plc-1), Ca2+/H+ exchanger (cpe-1), and secretory phospholipase A2 (splA2) for stress responses and cellulose utilization in Neurospora crassa. The Δplc-1, Δcpe-1, and ΔsplA2 mutants displayed increased sensitivity to the alkaline pH and reduced survival during induced thermotolerance. The ΔsplA2 mutant also exhibited hypersensitivity to the DTT-induced endoplasmic reticulum (ER) stress, increased microcrystalline cellulose utilization, increased protein secretion, and glucose accumulation in the culture supernatants. Moreover, the ΔsplA2 mutant could not grow on microcrystalline cellulose during ER stress. Furthermore, plc-1, cpe-1, and splA2 synthetically regulate the acquisition of thermotolerance induced by heat shock, responses to alkaline pH and ER stress, and utilization of cellulose and other alternate carbon sources in N. crassa. In addition, expression of the alkaline pH regulator, pac-3, and heat shock proteins, hsp60, and hsp80 was reduced in the Δplc-1, Δcpe-1, and ΔsplA2 single and double mutants. The expression of the unfolded protein response (UPR) markers grp-78 and pdi-1 was also significantly reduced in the mutants showing growth defect during ER stress. The increased cellulolytic activities of the ΔsplA2 and Δcpe-1; ΔsplA2 mutants were due to increased cbh-1, cbh-2, and endo-2 expression in N. crassa. Therefore, plc-1, cpe-1, and splA2 are involved in stress responses and cellulose utilization in N. crassa.
Collapse
Affiliation(s)
- Darshana Baruah
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India
| | - Ranjan Tamuli
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781 039, India.
| |
Collapse
|
5
|
Fang Y, Jiang J, Ding H, Li X, Xie X. Phospholipase C: Diverse functions in plant biotic stress resistance and fungal pathogenicity. MOLECULAR PLANT PATHOLOGY 2023; 24:1192-1202. [PMID: 37119461 PMCID: PMC10423330 DOI: 10.1111/mpp.13343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/10/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Phospholipase C (PLC) generates various second messenger molecules and mediates phospholipid hydrolysis. In recent years, the important roles of plant and fungal PLC in disease resistance and pathogenicity, respectively, have been determined. However, the roles of PLC in plants and fungi are unintegrated and relevant literature is disorganized. This makes it difficult for researchers to implement PLC-based strategies to improve disease resistance in plants. In this comprehensive review, we summarize the structure, classification, and phylogeny of the PLCs involved in plant biotic stress resistance and fungal pathogenicity. PLCs can be divided into two groups, nonspecific PLC (NPC) and phosphatidylinositol-specific PLC (PI-PLC), which present marked differences in phylogenetic evolution. The products of PLC genes in fungi play significant roles in physiological activity and pathogenesis, whereas those encoded by plant PLC genes mediate the immune response to fungi. This review provides a perspective for the future control of plant fungal diseases.
Collapse
Affiliation(s)
- Yuanpeng Fang
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Junmei Jiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Haixia Ding
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural BioengineeringMinistry of Education, Guizhou UniversityGuiyangChina
| | - Xin Xie
- Key Laboratory of Agricultural MicrobiologyCollege of Agriculture, Guizhou UniversityGuiyangChina
| |
Collapse
|
6
|
Wang J, Zhang F, Yao T, Li Y, Wei N. Risk assessment of mycotoxins, the identification and environmental influence on toxin-producing ability of Alternaria alternate in the main Tibetan Plateau Triticeae crops. Front Microbiol 2023; 13:1115592. [PMID: 36824588 PMCID: PMC9942522 DOI: 10.3389/fmicb.2022.1115592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/30/2022] [Indexed: 02/10/2023] Open
Abstract
In order to find out the contamination of mycotoxins in Triticeae crops of Qinghai-Tibet Plateau, a total of 153 Triticeae crop fruits were collected as target samples, and 22 mycotoxins were tested. High detection rate was found in the Alternaria mycotoxins, including tentoxin (TEN), tenuazonic acid (TEA) and alternariol (AOH) toxins. To further clarify the production rules of Alternaria mycotoxins. A number of 9 high yield toxic strains were selected from 65 bacterial strains and the gene sequences of each were determined. The nine selected Alternaria alternate were cultured under specific pH of the culture medium, temperature and ultraviolet (UV) irradiation, and their growth and toxicity were analyzed. The results showed that the toxic capacity of most A. alternate increased with the increase of culture environment temperature and decreased with the increase of UV irradiation. However, the production of some toxins did not meet this principle, or even met the principle of relativity. In the culture experiments, a total of five Alternaria toxins were detected as positive, which were TEN, AOH, alternariol monomethyl ether (AME), TEA, and Alternaria (ALT). The altenusin (ALS) toxin was not detected in the metabolites of the nine Alternaria strains. It indicated that the TEN, AOH, AME, TEA, and ALT toxins should be particularly valued in the future risk assessments. This finding provided comprehensive information of mycotoxins contamination in the Tibetan Plateau Triticeae crops, it pointed out a direction to the Tibetan Plateau food crops' quality control.
Collapse
Affiliation(s)
- Jun Wang
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Feilong Zhang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Ting Yao
- Zhang Zhong-jing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang, China
| | - Ying Li
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China,*Correspondence: Na Wei, ✉
| |
Collapse
|
7
|
Jiang Q, Li Y, Mao R, Bi Y, Liu Y, Zhang M, Li R, Yang Y, Prusky DB. AaCaMKs Positively Regulate Development, Infection Structure Differentiation and Pathogenicity in Alternaria alternata, Causal Agent of Pear Black Spot. Int J Mol Sci 2023; 24:ijms24021381. [PMID: 36674895 PMCID: PMC9865007 DOI: 10.3390/ijms24021381] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase (CaMK), a key downstream target protein in the Ca2+ signaling pathway of eukaryotes, plays an important regulatory role in the growth, development and pathogenicity of plant fungi. Three AaCaMKs (AaCaMK1, AaCaMK2 and AaCaMK3) with conserved PKC_like superfamily domains, ATP binding sites and ACT sites have been cloned from Alternaria alternata, However, their regulatory mechanism in A. alternata remains unclear. In this study, the function of the AaCaMKs in the development, infection structure differentiation and pathogenicity of A. alternata was elucidated through targeted gene disruption. The single disruption of AaCaMKs had no impact on the vegetative growth and spore morphology but significantly influenced hyphae growth, sporulation, biomass accumulation and melanin biosynthesis. Further expression analysis revealed that the AaCaMKs were up-regulated during the infection structure differentiation of A. alternata on hydrophobic and pear wax substrates. In vitro and in vivo analysis further revealed that the deletion of a single AaCaMKs gene significantly reduced the A. alternata conidial germination, appressorium formation and infection hyphae formation. In addition, pharmacological analysis confirmed that the CaMK specific inhibitor, KN93, inhibited conidial germination and appressorium formation in A. alternata. Meanwhile, the AaCaMKs genes deficiency significantly reduced the A. alternata pathogenicity. These results demonstrate that AaCaMKs regulate the development, infection structure differentiation and pathogenicity of A. alternata and provide potential targets for new effective fungicides.
Collapse
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1694
| | - Renyan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongxiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Rong Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Institute of Postharvest and Food Sciences, The Volcani Center, Agricultural Research Organization, Rishon LeZion 7505101, Israel
| |
Collapse
|
8
|
Yang Y, Xie P, Li Y, Bi Y, Prusky DB. Updating Insights into the Regulatory Mechanisms of Calcineurin-Activated Transcription Factor Crz1 in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1082. [PMID: 36294647 PMCID: PMC9604740 DOI: 10.3390/jof8101082] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Ca2+, as a second messenger in cells, enables organisms to adapt to different environmental stresses by rapidly sensing and responding to external stimuli. In recent years, the Ca2+ mediated calcium signaling pathway has been studied systematically in various mammals and fungi, indicating that the pathway is conserved among organisms. The pathway consists mainly of complex Ca2+ channel proteins, calcium pumps, Ca2+ transporters and many related proteins. Crz1, a transcription factor downstream of the calcium signaling pathway, participates in regulating cell survival, ion homeostasis, infection structure development, cell wall integrity and virulence. This review briefly summarizes the Ca2+ mediated calcium signaling pathway and regulatory roles in plant pathogenic fungi. Based on discussing the structure and localization of transcription factor Crz1, we focus on the regulatory role of Crz1 on growth and development, stress response, pathogenicity of pathogenic fungi and its regulatory mechanisms. Furthermore, we explore the cross-talk between Crz1 and other signaling pathways. Combined with the important role and pathogenic mechanism of Crz1 in fungi, the new strategies in which Crz1 may be used as a target to explore disease control in practice are also discussed.
Collapse
Affiliation(s)
- Yangyang Yang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Pengdong Xie
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov B. Prusky
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
9
|
Huang Y, Li YC, Li DM, Bi Y, Liu YX, Mao RY, Zhang M, Jiang QQ, Wang XJ, Prusky D. Molecular Characterization of Phospholipase C in Infection Structure Differentiation Induced by Pear Fruit Surface Signals, Stress Responses, Secondary Metabolism, and Virulence of Alternaria alternata. PHYTOPATHOLOGY 2022; 112:2207-2217. [PMID: 35612304 DOI: 10.1094/phyto-11-21-0475-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fungal pathogens use plant surface physiochemical signals to trigger specific developmental processes. To assess the role of phospholipase C (PLC) in mediating plant stimuli sensing of Alternaria alternata, the function of three PLC genes was characterized by constructing ΔAaPLC mutants. Here we showed that fruit wax-coated surfaces significantly induced appressorium formation in A. alternata and mutants. Germination of ΔAaPLC mutants did not differ from the wild type. Deletion of AaPLC1 led to the decrease of appressorium formation and infected hyphae, but the degree of reduction varies between the different types of waxes, with the strongest response to pear wax. Appressorium formation and infected hyphae of the ΔAaPLC1 mutant on dewaxed onion epidermis mounted with pear wax (θ4) were reduced by 14.5 and 65.7% after 8 h incubation, while ΔAaPLC2 and ΔAaPLC3 formed the same infection hyphae as wild type. In addition, AaPLC1 mutation caused pleiotropic effects on fungal biological function, including growth deficiency, changes in stress tolerance, weakening of pathogenicity to the host, as well as destruction of mycotoxin synthesis. Both AaPLC2 and AaPLC3 genes were found to have some effects on stress response and mycotoxin production. Taken together, AaPLC genes differentially regulate the growth, stress response, pathogenicity, and secondary metabolism of A. alternata.
Collapse
Affiliation(s)
- Yi Huang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Cai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dong-Mei Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yong-Xiang Liu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ren-Yan Mao
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Miao Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Qian-Qian Jiang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao-Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
10
|
Li R, Li Y, Xu W, Zhang M, Jiang Q, Liu Y, Li L, Bi Y, Prusky DB. Transcription factor AacmrA mediated melanin synthesis regulates the growth, appressorium formation, stress response and pathogenicity of pear fungal Alternaria alternata. Fungal Biol 2022; 126:687-695. [DOI: 10.1016/j.funbio.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/20/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
11
|
Jiang Q, Mao R, Li Y, Bi Y, Liu Y, Zhang M, Li R, Yang Y, Dov B P.
AaCaM
is required for infection structure differentiation and secondary metabolites in pear fungal pathogen
Alternaria alternata. J Appl Microbiol 2022; 133:2631-2641. [DOI: 10.1111/jam.15732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/12/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Qianqian Jiang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Renyan Mao
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yongcai Li
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yang Bi
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yongxiang Liu
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Miao Zhang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Rong Li
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Yangyang Yang
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
| | - Prusky Dov B
- College of Food Science and Engineering Gansu Agricultural University Lanzhou China
- Institute of Postharvest and Food Sciences The Volcani Center, Agricultural Research Organization Rishon LeZion Israel
| |
Collapse
|
12
|
The PH Domain and C-Terminal polyD Motif of Phafin2 Exhibit a Unique Concurrence in Animals. MEMBRANES 2022; 12:membranes12070696. [PMID: 35877899 PMCID: PMC9324892 DOI: 10.3390/membranes12070696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 01/27/2023]
Abstract
Phafin2, a member of the Phafin family of proteins, contributes to a plethora of cellular activities including autophagy, endosomal cargo transportation, and macropinocytosis. The PH and FYVE domains of Phafin2 play key roles in membrane binding, whereas the C-terminal poly aspartic acid (polyD) motif specifically autoinhibits the PH domain binding to the membrane phosphatidylinositol 3-phosphate (PtdIns3P). Since the Phafin2 FYVE domain also binds PtdIns3P, the role of the polyD motif remains unclear. In this study, bioinformatics tools and resources were employed to determine the concurrence of the PH-FYVE module with the polyD motif among Phafin2 and PH-, FYVE-, or polyD-containing proteins from bacteria to humans. FYVE was found to be an ancient domain of Phafin2 and is related to proteins that are present in both prokaryotes and eukaryotes. Interestingly, the polyD motif only evolved in Phafin2 and PH- or both PH-FYVE-containing proteins in animals. PolyD motifs are absent in PH domain-free FYVE-containing proteins, which usually display cellular trafficking or autophagic functions. Moreover, the prediction of the Phafin2-interacting network indicates that Phafin2 primarily cross-talks with proteins involved in autophagy, protein trafficking, and neuronal function. Taken together, the concurrence of the polyD motif with the PH domain may be associated with complex cellular functions that evolved specifically in animals.
Collapse
|
13
|
The transmembrane protein AaSho1 is essential for appressorium formation and secondary metabolism but dispensable for vegetative growth in pear fungal Alternaria alternata. Fungal Biol 2021; 126:139-148. [DOI: 10.1016/j.funbio.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 10/16/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
|