1
|
Stopnisek N, Hedžet S, Accetto T, Rupnik M. Insights into diversity, host-range, and temporal stability of Bacteroides and Phocaeicola prophages. BMC Microbiol 2025; 25:92. [PMID: 40011806 DOI: 10.1186/s12866-025-03827-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Phages are critical components of the gut microbiome, influencing bacterial composition and function as predators, parasites, and modulators of bacterial phenotypes. Prophages, integrated forms of these phages, are prevalent in many bacterial genomes and play a role in bacterial adaptation and evolution. However, the diversity and stability of prophages within gut commensals, particularly in the genera Bacteroides and Phocaeicola, remain underexplored. This study aims to screen and characterize prophages in these genera, providing insights into their diversity, host range, and temporal dynamics in the human gut. RESULTS Using a combination of three bioinformatic tools-Cenote-Taker 3, Vibrant, and PHASTER-we conducted a comprehensive analysis of prophages in Bacteroides and Phocaeicola. Cenote-Taker 3 identified the most diverse set of prophages, with significant overlaps observed between the tools. After clustering high-quality prophages, we identified 22 unique viral operational taxonomic units (vOTUs). Notably, comparisons between prophages identified in isolated bacterial genomes, metaviromes, and large public gut virome databases revealed a broader host range than initially observed in single isolates. Certain prophages were consistent across time points and individuals, suggesting temporal stability. All identified prophages belonged to the Caudoviricetes class and contained genes related to antibiotic resistance, toxin production, and metabolic processes. CONCLUSIONS The combined use of multiple prophage detection tools allowed for a more comprehensive assessment of prophage diversity in Bacteroides and Phocaeicola. The identified prophages were not only prevalent but also exhibited broad host ranges and temporal stability. The presence of antibiotic resistance and toxin genes suggests that these prophages may significantly influence bacterial community structure and function in the gut, with potential implications for human health. These findings highlight the importance of using diverse detection tools to accurately assess prophage diversity and dynamics.
Collapse
Affiliation(s)
- Nejc Stopnisek
- Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia.
- Department of Microbiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, Maribor, 2000, Slovenia.
| | - Stina Hedžet
- Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia
| | - Tomaž Accetto
- Biotechnical Faculty, University of Ljubljana, Groblje 3, Domzale, 1230, Slovenia
| | - Maja Rupnik
- Department for Microbiological Research, Centre for Medical Microbiology, National Laboratory of Health, Environment and Food, Prvomajska 1, Maribor, 2000, Slovenia
- Department of Microbiology, Faculty of Medicine, University of Maribor, Taborska ulica 8, Maribor, 2000, Slovenia
| |
Collapse
|
2
|
Coolahan M, Whalen KE. A review of quorum-sensing and its role in mediating interkingdom interactions in the ocean. Commun Biol 2025; 8:179. [PMID: 39905218 PMCID: PMC11794697 DOI: 10.1038/s42003-025-07608-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/27/2025] [Indexed: 02/06/2025] Open
Abstract
Quorum sensing, first described in marine systems five decades ago, is a well-characterized chemical communication system used to coordinate bacterial gene expression and behavior; however, the impact of quorum sensing on interkingdom interactions has been vastly understudied. In this review, we examine how these molecules mediate communication between bacteria and marine eukaryotes; influencing processes such as development, disease pathogenesis, and microbiome regulation within marine ecosystems. We describe the varied mechanisms eukaryotes have evolved to interfere with bacterial quorum sensing signaling, the crucial role these signals play in host-virus interactions, and how their exchange may be governed by outer membrane vesicles, prevalent in marine systems. Here, we present a dynamic portrayal of the impact of quorum sensing signals beyond bacterial communication, laying the groundwork for future investigations on their roles in shaping marine ecosystem structure and function.
Collapse
Affiliation(s)
- Megan Coolahan
- Department of Biology, Haverford College, Haverford, PA, USA
| | | |
Collapse
|
3
|
Richards VA, Ferrell BD, Polson SW, Wommack KE, Fuhrmann JJ. Soybean Bradyrhizobium spp. Spontaneously Produce Abundant and Diverse Temperate Phages in Culture. Viruses 2024; 16:1750. [PMID: 39599864 PMCID: PMC11599138 DOI: 10.3390/v16111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Soybean bradyrhizobia (Bradyrhizobium spp.) are symbiotic root-nodulating bacteria that fix atmospheric nitrogen for the host plant. The University of Delaware Bradyrhizobium Culture Collection (UDBCC; 353 accessions) was created to study the diversity and ecology of soybean bradyrhizobia. Some UDBCC accessions produce temperate (lysogenic) bacteriophages spontaneously under routine culture conditions without chemical or other apparent inducing agents. Spontaneous phage production may promote horizontal gene transfer and shape bacterial genomes and associated phenotypes. A diverse subset (n = 98) of the UDBCC was examined for spontaneously produced virus-like particles (VLPs) using epifluorescent microscopy, with a majority (69%) producing detectable VLPs (>1 × 107 mL-1) in laboratory culture. Phages from the higher-producing accessions (>2.0 × 108 VLP mL-1; n = 44) were examined using transmission electron microscopy. Diverse morphologies were observed, including various tail types and lengths, capsid sizes and shapes, and the presence of collars or baseplates. In many instances, putative extracellular vesicles of a size similar to virions were also observed. Three of the four species examined (B. japonicum, B. elkanii, and B. diazoefficiens) produced apparently tailless phages. All species except B. ottawaense also produced siphovirus-like phages, while all but B. diazoefficiens additionally produced podovirus-like phages. Myovirus-like phages were restricted to B. japonicum and B. elkanii. At least three strains were polylysogens, producing up to three distinct morphotypes. These observations suggest spontaneously produced phages may play a significant role in the ecology and evolution of soybean bradyrhizobia.
Collapse
Affiliation(s)
- Vanessa A. Richards
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Barbra D. Ferrell
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, Newark, DE 19713, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - K. Eric Wommack
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| | - Jeffry J. Fuhrmann
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA
- Microbiology Graduate Program, University of Delaware, Newark, DE 19713, USA
| |
Collapse
|
4
|
Zeng T, Wang L, Ren X, Al-Dhabi NA, Sha H, Fu Y, Tang W, Zhang J. The effect of quorum sensing on cadmium- and lead-containing wastewater treatment using activated sludge: Removal efficiency, enzyme activity, and microbial community. ENVIRONMENTAL RESEARCH 2024; 252:118835. [PMID: 38582423 DOI: 10.1016/j.envres.2024.118835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Quorum sensing (QS) is prevalent in activated sludge processes; however, its essential role in the treatment of heavy metal wastewater has rarely been studied. Therefore, in this study, acyl homoserine lactone (AHL)-mediated QS was used to regulate the removal performance, enzyme activity, and microbial community of Cd- and Pb-containing wastewater in a sequencing batch reactor (SBR) over 30 cycles. The results showed that exogenous AHL strengthened the removal of Cd(II) and Pb(II) in their coexistence wastewater during the entire period. The removal of NH4+-N, total phosphorus, and chemical oxygen demand (COD) was also enhanced by the addition of AHL despite the coexistence of Cd(II) and Pb(II). Meanwhile, the protein content of extracellular polymeric substances was elevated and the microbial metabolism and antioxidative response were stimulated by the addition of AHL, which was beneficial for resistance to heavy metal stress and promoted pollutant removal by activated sludge. Microbial sequencing indicated that AHL optimized the microbial community structure, with the abundance of dominant taxa Proteobacteria and Unclassified_f_Enterobacteriaceae increasing by 73.9% and 59.2% maximally, respectively. This study offers valuable insights into the mechanisms underlying Cd(II) and Pb(II) removal as well as microbial community succession under AHL availability in industrial wastewater.
Collapse
Affiliation(s)
- Taotao Zeng
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Liangqin Wang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazard, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Haichao Sha
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Yusong Fu
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, University of South China, Hengyang, 421001, Hunan, China
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resources & Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
5
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
6
|
Unveiling Ecological and Genetic Novelty within Lytic and Lysogenic Viral Communities of Hot Spring Phototrophic Microbial Mats. Microbiol Spectr 2021; 9:e0069421. [PMID: 34787442 PMCID: PMC8597652 DOI: 10.1128/spectrum.00694-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses exert diverse ecosystem impacts by controlling their host community through lytic predator-prey dynamics. However, the mechanisms by which lysogenic viruses influence their host-microbial community are less clear. In hot springs, lysogeny is considered an active lifestyle, yet it has not been systematically studied in all habitats, with phototrophic microbial mats (PMMs) being particularly not studied. We carried out viral metagenomics following in situ mitomycin C induction experiments in PMMs from Porcelana hot spring (Northern Patagonia, Chile). The compositional changes of viral communities at two different sites were analyzed at the genomic and gene levels. Furthermore, the presence of integrated prophage sequences in environmental metagenome-assembled genomes from published Porcelana PMM metagenomes was analyzed. Our results suggest that virus-specific replicative cycles (lytic and lysogenic) were associated with specific host taxa with different metabolic capacities. One of the most abundant lytic viral groups corresponded to cyanophages, which would infect the cyanobacteria Fischerella, the most active and dominant primary producer in thermophilic PMMs. Likewise, lysogenic viruses were related exclusively to chemoheterotrophic bacteria from the phyla Proteobacteria, Firmicutes, and Actinobacteria. These temperate viruses possess accessory genes to sense or control stress-related processes in their hosts, such as sporulation and biofilm formation. Taken together, these observations suggest a nexus between the ecological role of the host (metabolism) and the type of viral lifestyle in thermophilic PMMs. This has direct implications in viral ecology, where the lysogenic-lytic switch is determined by nutrient abundance and microbial density but also by the metabolism type that prevails in the host community. IMPORTANCE Hot springs harbor microbial communities dominated by a limited variety of microorganisms and, as such, have become a model for studying community ecology and understanding how biotic and abiotic interactions shape their structure. Viruses in hot springs are shown to be ubiquitous, numerous, and active components of these communities. However, lytic and lysogenic viral communities of thermophilic phototrophic microbial mats (PMMs) remain largely unexplored. In this work, we use the power of viral metagenomics to reveal changes in the viral community following a mitomycin C induction experiment in PMMs. The importance of our research is that it will improve our understanding of viral lifestyles in PMMs via exploring the differences in the composition of natural and induced viral communities at the genome and gene levels. This novel information will contribute to deciphering which biotic and abiotic factors may control the transitions between lytic and lysogenic cycles in these extreme environments.
Collapse
|
7
|
Liang X, Wang Y, Zhang Y, Li B, Radosevich M. Bacteriophage-host depth distribution patterns in soil are maintained after nutrient stimulation in vitro. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147589. [PMID: 33991924 DOI: 10.1016/j.scitotenv.2021.147589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Previous research has revealed the ecological importance of viruses in different ecosystems. However, bacteriophage-host distribution patterns in soil depth profiles have not been investigated. Environmental factors such as nutrient availability and physiological stress can impact the mode (either lytic or lysogenic) of viral reproduction and subsequent influence of virus infection on ecological processes. Soil depth profiles with distinct geochemical properties are ideal models to investigate the virus-host relationships as a function of environmental trophic status and cell abundance. Batch enrichment experiments using soil collected at varying depths (0-140 cm) as inoculum were performed to explore the interactions between viruses and co-occurring microbial hosts under nutrient stimulation. Both viral and bacterial abundance increased in the nutrient media compared with those in the original soils. Bacterial abundance was similar in mixed-cultures of soils regardless of sampling depth, whereas viral abundance was negatively correlated with the depth of soil samples which caused a decreasing virus-to-bacteria ratio. The lysogenetic fraction increased with soil depth in a similar manner as in the original soils assessed directly without nutrient stimulation. The bacterial diversity decreased with soil depth, and was influenced primarily by soil type, viral abundance, and virus-to-bacteria ratio. The bacterial communities were dominated by Bacilli, Beta-, Gamma-Proteobacteria, and Clostridia after nutrient stimulation. Viral and bacterial community structure also varied with soil horizons (i.e., depth). The results showed that the patterns for virus-host interactions shaped by the geochemical properties in the original environment were conserved or similar after in vitro nutrient stimulation. These findings suggest that short-term changes in trophic status alone may not significantly alter the balance of viral reproductive strategies in terrestrial ecosystems as in the antecedent environmental conditions that the host community has long adapted to, and other factors such as stress, host diversity or adaptation may be necessary to trigger community-level shifts in the interactions between viruses and hosts that responded most favorably to nutrient addition.
Collapse
Affiliation(s)
- Xiaolong Liang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| | - Yusong Wang
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA
| | - Ying Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016, China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
8
|
Fan D, Sun J, Liu C, Wang S, Han J, Agathokleous E, Zhu Y. Measurement and modeling of hormesis in soil bacteria and fungi under single and combined treatments of Cd and Pb. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147494. [PMID: 34088122 DOI: 10.1016/j.scitotenv.2021.147494] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Heavy metals are considered major environmental pollutants. Soil microorganisms represent a predominant component of soils ecosystems, yet there is little information regarding hormetic responses of soil microorganisms to single and combined exposures to heavy metals. In the present study, to explore and predict the hormetic response of soil microorganisms, dose-response relationships of bacterial and fungal populations to single and combined treatments of cadmium (Cd) and lead (Pb) were evaluated. The results revealed hormetic responses of bacterial and fungal populations to both single and combined Cd and Pb treatments. The maximum stimulation (Mmax; relative to control treatment with no metals) of bacterial and fungal populations was 40% at 2 mg Cd/kg and 60% at 160 mg Pb/kg. An enhanced Mmax occurred in bacterial (50%) and fungal (75%) populations in the presence of the binary mixtures of 0.6 mg Cd/kg + 160 mg Pb/kg and 4.0 mg Cd/kg + 200 mg Pb/kg, suggesting positive additivity. This study showed that the hormetic effects of the mixtures were related to the independent effect of Cd and Pb, but they could not be predicted by the single effect of Cd or Pb. These new findings of the hormetic response of soil microorganisms to single treatments of Cd and Pb and their binary mixtures can facilitate the determination and minimization of ecological risks in heavy metal-polluted soils.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jinwei Sun
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenglei Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shengyan Wang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, School of Applied Meteorology, Nanjing University of Information Science & Technology (NUIST), Nanjing, Jiangsu 210044, China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, China; Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
9
|
Temporal Changes of Virus-Like Particle Abundance and Metagenomic Comparison of Viral Communities in Cropland and Prairie Soils. mSphere 2021; 6:e0116020. [PMID: 34077260 PMCID: PMC8265675 DOI: 10.1128/msphere.01160-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
During the last several decades, viruses have been increasingly recognized for their abundance, ubiquity, and important roles in different ecosystems. Despite known contributions to aquatic systems, few studies examine viral abundance and community structure over time in terrestrial ecosystems. The effects of land conversion and land management on soil microbes have been previously investigated, but their effects on virus population are not well studied. This study examined annual dynamics of viral abundance in soils from a native tallgrass prairie and two croplands, conventional till winter wheat and no-till canola, in Oklahoma. Virus-like particle (VLP) abundance varied across sites, and showed clear seasonal shifts. VLP abundance significantly correlated with environmental variables that were generally reflective of land use, including air temperature, soil nitrogen, and plant canopy coverage. Structural equation modeling supported the effects of land use on soil communities by emphasizing interactions between management, environmental factors, and viral and bacterial abundance. Between the viral metagenomes from the prairie and tilled wheat field, 1,231 unique viral operational taxonomic units (vOTUs) were identified, and only five were shared that were rare in the contrasting field. Only 13% of the vOTUs had similarity to previously identified viruses in the RefSeq database, with only 7% having known taxonomic classification. Together, our findings indicated land use and tillage practices influence virus abundance and community structure. Analyses of viromes over time and space are vital to viral ecology in providing insight on viral communities and key information on interactions between viruses, their microbial hosts, and the environment. IMPORTANCE Conversion of land alters the physiochemical and biological environments by not only changing the aboveground community, but also modifying the soil environment for viruses and microbes. Soil microbial communities are critical to nutrient cycling, carbon mineralization, and soil quality; and viruses are known for influencing microbial abundance, community structure, and evolution. Therefore, viruses are considered an important part of soil functions in terrestrial ecosystems. In aquatic environments, virus abundance generally exceeds bacterial counts by an order of magnitude, and they are thought to be one of the greatest genetic reservoirs on the planet. However, data are extremely limited on viruses in soils, and even less is known about their responses to the disturbances associated with land use and management. The study provides important insights into the temporal dynamics of viral abundance and the structure of viral communities in response to the common practice of turning native habitats into arable soils.
Collapse
|
10
|
Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021; 9:microorganisms9051056. [PMID: 34068401 PMCID: PMC8153558 DOI: 10.3390/microorganisms9051056] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages’ agricultural application has limitations rooted in these viruses’ biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction’s possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.
Collapse
|
11
|
Abstract
Bacteriophages are the most diverse and abundant biological entities on the Earth and require host bacteria to replicate. Because of this obligate relationship, in addition to the challenging conditions of surrounding environments, phages must integrate information about extrinsic and intrinsic factors when infecting their host. This integration helps to determine whether the infection becomes lytic or lysogenic, which likely influences phage spreading and long-term survival. Although a variety of environmental and physiological clues are known to modulate lysis-lysogeny decisions, the social interplay among phages and host populations has been overlooked until recently. A growing body of evidence indicates that cell-cell communication in bacteria and, more recently, peptide-based communication among phage-phage populations, affect phage-host interactions by controlling phage lysis-lysogeny decisions and phage counter-defensive strategies in bacteria. Here, we explore and discuss the role of signal molecules as well as quorum sensing and quenching factors that mediate phage-host interactions. Our aim is to provide an overview of population-dependent mechanisms that influence phage replication, and how social communication may affect the dynamics and evolution of microbial communities, including their implications in phage therapy.
Collapse
|
12
|
Effects of Exogenous Microbial Agents on Soil Nutrient and Microbial Community Composition in Greenhouse-Derived Vegetable Straw Composts. SUSTAINABILITY 2021. [DOI: 10.3390/su13052925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vegetable waste causes resource waste and environmental pollution, giving rise to the spread of harmful organisms and causing disease in normal vegetable cultivation. Random distribution of vegetable waste can increase the risk of non-point agricultural pollution and explore the feasibility of its resource utilization. This study was designed to evaluate the effects of different doses of exogenous microbial agents on soil microbial communities after in situ composting of cucumber straw on plots with biodegradable mulch films. The cucumber straw and chicken manure were used as the base materials, and the next generation sequencing was used to analyze changes in the microbiome following composting. The results demonstrate that the addition of exogenous microbial agents had prolonged the high-temperature duration, reduced the total organic carbon (TOC) content, and accelerated the decline in the C/N ratio, ensuring compost maturity and effectively shortening the composting time. The predominant bacterial phyla of the four treatment groups were Proteobacteria and Firmicutes; while among fungal phyla, these treatments decreased the relative abundance of Ascomycota. The treatment of 300 t/ha microbial agents significantly increased the richness and diversity of both the bacterial and fungal communities. Redundancy analysis suggested that soil total nitrogen (TN) content had a significant effect on the bacterial community, while TN content, pH, and temperature influenced the fungal community in these samples. Collectively, the treatment of 300 t/ha exogenous microbial agents improved the quality of composting and promoted microbiome diversity.
Collapse
|