1
|
Qin Y, Xu H, Sun J, Cheng X, Lei J, Lian W, Han C, Huang W, Zhang M, Chen Y. Succession of microbiota and its influence on the dynamics of volatile compounds in the semi-artificial inoculation fermentation of mulberry wine. Food Chem X 2024; 21:101223. [PMID: 38384682 PMCID: PMC10878857 DOI: 10.1016/j.fochx.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
To improve the delightful flavor of mulberry wine through semi-artificial inoculation fermentation with Saccharomyces cerevisiae, we studied the dynamics change of microbiota, along with the physicochemical properties and metabolite profiles and their interaction relationship during the fermentation process. The abundance of lactic acid bacteria (Weissella, Lactobacillus, Fructobacillus, and Pediococcus) increased significantly during fermentation, while yeasts gradually established dominance. The inter-kingdom network of the dominant genera analysis further identified the following as core microbiota: Alternaria, Botrytis, Kazachstania, Acremonium, Mycosphaerella, Pediococcus, Gardnerella, and Schizothecium. Additionally, pH, alcohol, and total acid were significantly affected by microbiota variation. Fourteen of all identified volatile compounds with key different aromas were screened using PCA, OPLS-DA, and rOAV. The network of interconnected core microbiota with key different aromas revealed that Kazachstania and Pediococcus had stronger correlations with 1-butanol, 3-methyl-, propanoic acid, and 2-methyl-ethyl ester.
Collapse
Affiliation(s)
- Yanan Qin
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Haotian Xu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinshuai Sun
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - XiangYang Cheng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jing Lei
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Weijia Lian
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Chen Han
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| | - Wanting Huang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Ya Chen
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, China
| |
Collapse
|
2
|
Rana B, Chandola R, Sanwal P, Joshi GK. Unveiling the microbial communities and metabolic pathways of Keem, a traditional starter culture, through whole-genome sequencing. Sci Rep 2024; 14:4031. [PMID: 38369518 PMCID: PMC10874962 DOI: 10.1038/s41598-024-53350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Traditional alcoholic beverages have played a significant role in the cultural, social, and culinary fabric of societies worldwide for centuries. Studying the microbial community structure and their metabolic potential in such beverages is necessary to define product quality, safety, and consistency, as well as to explore associated biotechnological applications. In the present investigation, Illumina-based (MiSeq system) whole-genome shotgun sequencing was utilized to characterize the microbial diversity and conduct predictive gene function analysis of keem, a starter culture employed by the Jaunsari tribal community in India for producing various traditional alcoholic beverages. A total of 8,665,213 sequences, with an average base length of 151 bps, were analyzed using MG-RAST. The analysis revealed the dominance of bacteria (95.81%), followed by eukaryotes (4.11%), archaea (0.05%), and viruses (0.03%). At the phylum level, Actinobacteria (81.18%) was the most abundant, followed by Firmicutes (10.56%), Proteobacteria (4.00%), and Ascomycota (3.02%). The most predominant genera were Saccharopolyspora (36.31%), followed by Brevibacterium (15.49%), Streptomyces (9.52%), Staphylococcus (8.75%), Bacillus (4.59%), and Brachybacterium (3.42%). At the species level, the bacterial, fungal, and viral populations of the keem sample could be categorized into 3347, 57, and 106 species, respectively. Various functional attributes to the sequenced data were assigned using Cluster of Orthologous Groups (COG), Non-supervised Orthologous Groups (NOG), subsystem, and KEGG Orthology (KO) annotations. The most prevalent metabolic pathways included carbohydrate, lipid, and amino acid metabolism, as well as the biosynthesis of glycans, secondary metabolites, and xenobiotic biodegradation. Given the rich microbial diversity and its associated metabolic potential, investigating the transition of keem from a traditional starter culture to an industrial one presents a compelling avenue for future research.
Collapse
Affiliation(s)
- Babita Rana
- Department of Biotechnology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Renu Chandola
- Department of Biotechnology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, India
| | - Pankaj Sanwal
- Department of Biochemical Engineering, BTKIT, Dwarahat, Uttarakhand, India
| | - Gopal Krishna Joshi
- Department of Biotechnology, School of Life Sciences, Hemvati Nandan Bahuguna Garhwal University, Srinagar Garhwal, Uttarakhand, India.
| |
Collapse
|
3
|
Hlangwani E, Abrahams A, Masenya K, Adebo OA. Analysis of the bacterial and fungal populations in South African sorghum beer (umqombothi) using full-length 16S rRNA amplicon sequencing. World J Microbiol Biotechnol 2023; 39:350. [PMID: 37864040 PMCID: PMC10589195 DOI: 10.1007/s11274-023-03764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 09/14/2023] [Indexed: 10/22/2023]
Abstract
There is a need to profile microorganisms which exist pre-and-post-production of umqombothi, to understand its microbial diversity and the interactions which subsequently influence the final product. Thus, this study sought to determine the relative microbial abundance in umqombothi and predict the functional pathways of bacterial and fungal microbiota present. Full-length bacterial 16S rRNA and internal transcribed spacer (ITS) gene sequencing using PacBio single-molecule, real-time (SMRT) technology was used to assess the microbial compositions. PICRUSt2 was adopted to infer microbial functional differences. A mixture of harmful and beneficial microorganisms was observed in all samples. The microbial diversity differed significantly between the mixed raw ingredients (MRI), customary beer brew (CB), and optimised beer brew (OPB). The highest bacterial species diversity was observed in the MRI, while the highest fungal species diversity was observed in the OPB. The dominant bacterial species in the MRI, CB, and OPB were Kosakonia cowanii, Apilactobacillus pseudoficulneus, and Vibrio alginolyticus, respectively, while the dominant fungal species was Apiotrichum laibachii. The predicted functional annotations revealed significant (p < 0.05) differences in the microbial pathways of the fermented and unfermented samples. The most abundant pathways in the MRI were the branched-chain amino acid biosynthesis super pathway and the pentose phosphate pathway. The CB sample was characterised by folate (vitamin B9) transformations III, and mixed acid fermentation. Biotin (vitamin B7) biosynthesis I and L-valine biosynthesis characterised the OPB sample. These findings can assist in identifying potential starter cultures for the commercial production of umqombothi. Specifically, A. pseudoficulneus can be used for controlled fermentation during the production of umqombothi. Likewise, the use of A. laibachii can allow for better control over the fermentation kinetics such as carbohydrate conversion and end-product characteristics, especially esters and aroma compounds.
Collapse
Affiliation(s)
- Edwin Hlangwani
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - Adrian Abrahams
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa
| | - Kedibone Masenya
- Neuroscience Institute, University of Cape Town, Private Bag X3, Rondebosch, Cape Town, 7701, South Africa
| | - Oluwafemi Ayodeji Adebo
- Food Innovation Research Group, Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, South Africa.
| |
Collapse
|
4
|
Tomar S, Mitra D, Kumar G, Kashyap P, Sharma M, Kumar S, Sridhar K, Pant K. Microbial Diversity and Functional Potential of Keem: A Traditional Starter Culture for Alcoholic Beverage-Application of Next-Generation Amplicon and Shotgun Metagenome Sequences. Mol Biotechnol 2023:10.1007/s12033-023-00839-3. [PMID: 37566190 DOI: 10.1007/s12033-023-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
"Pakhoi" is an ethnic drink of the Tons valley, Uttarakhand, India produced by fermenting jaggery and barley with the help of a starter culture called "keem". In the present study, we investigated the microbial diversity and associated functional potential of "keem" using shotgun metagenome sequencing and amplicon sequencing. We also compared the taxonomic data obtained using these two sequencing techniques. The results showed that shotgun sequencing revealed a higher resolution of taxonomic profiling as compared to the amplicon sequencing. Furthermore, it was found that the genera detected by shotgun sequencing were valuable for facilitating the fermentation process. Additionally, to understand the functional profiling of the genera, different databases were used for annotation, resulting in a total of 13 metabolic pathways. The five most abundant KEGG functions were genetic information processing, metabolism, translation, cofactor and vitamin metabolism and xenobiotic degradation. In contrast, the top five COG were in order of highest frequency sequences belonging to transcription, followed by general function prediction, carbohydrate transport metabolism, amino acid transport and metabolism and translation and biogenesis. Gene ontology revealed many pathways, biochemical processes and molecular functions associated with the organisms forming the starter culture. Overall, the present study can help to understand the microbial diversity and its role in fermentation of traditional alcoholic beverages using "Keem".
Collapse
Affiliation(s)
- Shikha Tomar
- Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, 248002, India
| | - Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, West Bengal, 733134, India
| | - Gaurav Kumar
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Minaxi Sharma
- Department of Applied Biology, University of Science and Technology, Baridua, Meghalaya, 793101, India
| | - Shiv Kumar
- MMICT&BM (HM), Maharishi Markandeshwar (Deemed to Be University), Mullana, Haryana, 133207, India.
| | - Kandi Sridhar
- Department of Food Technology, Karpagam Academy of Higher Education (Deemed to Be University), Coimbatore, 641021, India.
| | - Kumud Pant
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
5
|
N’Tcha C, Sina H, Bourobou DN, Hoteyi SMI, Boya B, Agnimonhan R, Mavoungou JF, Adjanohoun A, Babalola OO, Baba-Moussa L. Resistance and Biofilm Production Profile of Potential Isolated from Kpètè-Kpètè Used to Produce Traditional Fermented Beer. Microorganisms 2023; 11:1939. [PMID: 37630499 PMCID: PMC10459457 DOI: 10.3390/microorganisms11081939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
This study aimed to characterize the pathogenicity of bacteria isolated from the starter of two traditional beers produced and consumed in Benin. After standard microbial identification, species were identified by specific biochemical tests such as catalase, coagulase, and API 20 E. Antibiotic sensitivity was tested according to the French Society of Microbiology Antibiogram Committee. The crystal violet microplate technique evaluated the biofilm production and conventional PCR was used to identify genes encoding virulence and macrolide resistance. According to our data, the traditional starter known as kpètè-kpètè that is used to produce beer is contaminated by Enterobacteriaceae and staphylococci species. Thus, 28.43% of the isolated bacteria were coagulase-negative staphylococci (CNS), and 10.93% coagulase-positive staphylococci (CPS). Six species such as Klebsiella terrigena (1.38%), Enterobacter aerogens (4.14%), Providencia rettgeri (5.51%), Chryseomonas luteola (6.89%), Serratia rubidae (15.16%), and Enterobacter cloacae (27.56%) were identified among Enterobacteriaceae. Those bacterial strains are multi-resistant to conventional antibiotics. The hight capability of produced biofilms was recorded with Enterobacter aerogens, Klebsiella terrigena (100%), Providencia rettgeri (75%), and Staphylococcus spp (60%). Enterobacter cloacae (4%) and coagulase-negative Staphylococcus (5.55%) harbor the macrolide resistance gene. For other strains, these genes were not detected. Foods contaminated with bacteria resistant to antibiotics and carrying a virulence gene could constitute a potential public health problem. There is a need to increase awareness campaigns on hygiene rules in preparing and selling these traditional beers.
Collapse
Affiliation(s)
- Christine N’Tcha
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| | - Dyana Ndiade Bourobou
- Institut de Recherches Agronomiques et Forestières (IRAF), BP.12978 Gros-Bouquet, Libreville B.P. 16 182, Gabon; (D.N.B.); (J.F.M.)
| | - S. M. Ismaël Hoteyi
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| | - Bawa Boya
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| | - Raoul Agnimonhan
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| | - Jacques François Mavoungou
- Institut de Recherches Agronomiques et Forestières (IRAF), BP.12978 Gros-Bouquet, Libreville B.P. 16 182, Gabon; (D.N.B.); (J.F.M.)
| | - Adolphe Adjanohoun
- National Agronomic Research Institute of Benin, Cotonou 01 BP 884, Benin;
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, University of Abomey-Calavi, Abomey-Calavi 05 BP 1604, Benin; (C.N.); (H.S.); (S.M.I.H.); (B.B.); (R.A.)
| |
Collapse
|
6
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
7
|
Balogun FO, Abdulsalam RA, Ojo AO, Cason E, Sabiu S. Chemical Characterization and Metagenomic Identification of Endophytic Microbiome from South African Sunflower ( Helianthus annus) Seeds. Microorganisms 2023; 11:988. [PMID: 37110411 PMCID: PMC10146784 DOI: 10.3390/microorganisms11040988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Helianthus annus (sunflower) is a globally important oilseed crop whose survival is threatened by various pathogenic diseases. Agrochemical products are used to eradicate these diseases; however, due to their unfriendly environmental consequences, characterizing microorganisms for exploration as biocontrol agents are considered better alternatives against the use of synthetic chemicals. The study assessed the oil contents of 20 sunflower seed cultivars using FAMEs-chromatography and characterized the endophytic fungi and bacteria microbiome using Illumina sequencing of fungi ITS 1 and bacteria 16S (V3-V4) regions of the rRNA operon. The oil contents ranged between 41-52.8%, and 23 fatty acid components (in varied amounts) were found in all the cultivars, with linoleic (53%) and oleic (28%) acids as the most abundant. Ascomycota (fungi) and Proteobacteria (bacteria) dominated the cultivars at the phyla level, while Alternaria and Bacillus at the genus level in varying abundance. AGSUN 5102 and AGSUN 5101 (AGSUN 5270 for bacteria) had the highest fungi diversity structure, which may have been contributed by the high relative abundance of linoleic acid in the fatty acid components. Dominant fungi genera such as Alternaria, Aspergillus, Aureobasidium, Alternariaste, Cladosporium, Penicillium, and bacteria including Bacillus, Staphylococcus, and Lactobacillus are established, providing insight into the fungi and bacteria community structures from the seeds of South Africa sunflower.
Collapse
Affiliation(s)
- Fatai Oladunni Balogun
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| | - Rukayat Abiola Abdulsalam
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| | - Abidemi Oluranti Ojo
- Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein 9300, South Africa
| | - Errol Cason
- Department of Animal Science, University of the Free State, Bloemfontein 9300, South Africa;
| | - Saheed Sabiu
- Department of Biotechnology and Food Science, Durban University of Technology, Durban 4000, South Africa; (F.O.B.); (R.A.A.)
| |
Collapse
|
8
|
Succession of Bacterial and Fungal Communities during Fermentation of Medicinal Plants. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fermentation of medicinal plants has been studied very little, as compared to the fermentation of food and beverages. One approach applies fermentation by single bacterial or fungal strains and targets the production of specific compounds or preservation of the fermented material. Spontaneous fermentation by an autochthonous starter community may lead to a more diverse blend of fermentation products because co-occurring microbes may activate the biosynthetic potentials and formation of compounds not produced in single strain approaches. We applied the community approach and studied the fermentation of four medicinal plants (Achillea millefolium, Taraxacum officinale, Mercurialis perennis, and Euphrasia officinalis), according to a standardized pharmaceutical fermentation method. It is based on the spontaneous fermentation by plant-specific bacterial and fungal communities under a distinct temperature regime, with a recurrent cooling during the first week and further fermentation for at least six months. The results revealed both general and plant-specific patterns in the composition and succession of microbial communities during fermentation. Lactic acid bacteria increasingly dominated in all preparations, whereas the fungal communities retained more plant-specific features. Three distinct fermentation phases with characteristic bacterial communities were identified, i.e., early, middle, and late phases. Co-occurrence network analyses revealed the plant-specific features of the microbial communities.
Collapse
|
9
|
Carolina RA, Alfredo CR. Yeast and Non-yeast Fungi: the hidden allies in Pulque Fermentation. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
de Los Ríos A, Garrido-Benavent I, Limón A, Cason ED, Maggs-Kölling G, Cowan D, Valverde A. Novel lichen-dominated hypolithic communities in the Namib Desert. MICROBIAL ECOLOGY 2022; 83:1036-1048. [PMID: 34312709 PMCID: PMC9015988 DOI: 10.1007/s00248-021-01812-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
The ventral surfaces of translucent rocks from hot desert pavements often harbor hypolithic microbial communities, which are mostly dominated by cyanobacteria. The Namib Desert fog belt supports extensive hypolithic colonization of quartz rocks, which are also colonized by lichens on their dorsal surfaces. Here, we aim to evaluate whether lichens colonize the ventral surface of the rocks (i.e., show hypolithic lifestyle) and compare the bacterial composition of these coastal hypolithic communities with those found inland. Fungal DNA barcoding and fungal and bacterial Illumina metabarcoding were combined with electron microscopy to characterize the composition and spatial structure of hypolithic communities from two (coastal and inland) areas in the Namib Desert. We report, for the first time, the structure and composition of lichen-dominated hypolithic communities found in the coastal zone of the Namib Desert with extensive epilithic lichen cover. Lichen modified areoles with inverted morphology of the genus Stellarangia (three lineages) and Buellia (two lineages) were the main components of these hypolithic communities. Some of these lineages were also found in epilithic habitats. These lichen-dominated hypolithic communities differed in structural organization and bacterial community composition from those found in inland areas. The hypolithic lichen colonization characterized here seems not to be an extension of epilithic or biological soil crust lichen growths but the result of specific sublithic microenvironmental conditions. Moisture derived from fog and dew could be the main driver of this unique colonization.
Collapse
Affiliation(s)
- Asunción de Los Ríos
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain.
| | - Isaac Garrido-Benavent
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
- Departament de Botànica i Geologia, Facultat de Ciències Biològiques, Universitat de València (UV), C. Doctor Moliner 50, 46100, Burjassot, València, Spain
| | - Alicia Limón
- Biogeochemistry and Microbial Ecology Department, Museo Nacional de Ciencias Naturales, CSIC, Serrano 115 dpdo, 28006, Madrid, Spain
| | - Errol D Cason
- Department of Animal Science, University of the Free State, Bloemfontein, South Africa
| | | | - Don Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Angel Valverde
- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), C/ Cordel de Merinas 40-52, 37008, Salamanca, Spain
| |
Collapse
|
11
|
Fentie EG, Jeong M, Emire SA, Demsash HD, Kim MA, Shin JH. Fermentation dynamics of spontaneously fermented Ethiopian honey wine, Tej. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Anyogu A, Olukorede A, Anumudu C, Onyeaka H, Areo E, Adewale O, Odimba JN, Nwaiwu O. Microorganisms and food safety risks associated with indigenous fermented foods from Africa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108227] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Abstract
Mixed microbial cultures create sour beers but many brewers do not know which microbes comprise their cultures. The objective of this work was to use deep sequencing to identify microorganisms in sour beers brewed by spontaneous and non-spontaneous methods. Twenty samples were received from brewers, which were processed for microbiome analysis by next generation sequencing. For bacteria, primers were used to amplify the V3-V4 region of the 16S rRNA gene; fungal DNA detection was performed using primers to amplify the entire internal transcribed spacer region. The sequencing results were then used for taxonomy assignment, sample composition, and diversity analyses, as well as nucleotide BLAST searching. We identified 60 genera and 140 species of bacteria, of which the most prevalent were Lactobacillus acetotolerans, Pediococcus damnosus, and Ralstonia picketti/mannitolilytica. In fungal identification, 19 genera and 26 species were found, among which the most common yeasts were Brettanomyces bruxellensis and Saccharomyces cerevisiae. In some cases, genetic material from more than 60 microorganisms was found in a single sample. In conclusion, we were able to determine the microbiomes of various mixed cultures used to produce beer, providing useful information to better understand the sour beer fermentation process and brewing techniques.
Collapse
|
14
|
Narzary D, Boro N, Borah A, Okubo T, Takami H. Community structure and metabolic potentials of the traditional rice beer starter 'emao'. Sci Rep 2021; 11:14628. [PMID: 34272462 PMCID: PMC8285430 DOI: 10.1038/s41598-021-94059-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/06/2021] [Indexed: 01/02/2023] Open
Abstract
The emao, a traditional beer starter used in the North-East regions of India produces a high quality of beer from rice substrates; however, its microbial community structure and functional metabolic modules remain unknown. To address this gap, we have used shot-gun whole-metagenome sequencing technology; accordingly, we have detected several enzymes that are known to catalyze saccharification, lignocellulose degradation, and biofuel production indicating the presence of metabolic functionome in the emao. The abundance of eukaryotic microorganisms, specifically the members of Mucoromycota and Ascomycota, dominated over the prokaryotes in the emao compared to previous metagenomic studies on such traditional starters where the relative abundance of prokaryotes occurred higher than the eukaryotes. The family Rhizopodaceae (64.5%) and its genus Rhizopus (64%) were the most dominant ones, followed by Phaffomycetaceae (11.14%) and its genus Wickerhamomyces (10.03%). The family Leuconostocaceae (6.09%) represented by two genera (Leuconostoc and Weissella) was dominant over the other bacteria, and it was the third-highest in overall relative abundance in the emao. The comprehensive microbial species diversity, community structure, and metabolic modules found in the emao are of practical value in the formulation of mixed-microbial cultures for biofuel production from plant-based feedstocks.
Collapse
Affiliation(s)
- Diganta Narzary
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India.
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan.
| | - Nitesh Boro
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Ashis Borah
- Microbiology and Molecular Systematics Lab, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Takashi Okubo
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Macrogen Japan Corp., 2-4-32 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Hideto Takami
- Yokohama Institute for Earth Sciences, JAMSTEC, Yokohama, 236-0001, Japan
- Marine Microbiology, Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564, Japan
| |
Collapse
|
15
|
Abstract
Brewing is among the oldest biotechnological processes, in which barley malt and—to a lesser extent—wheat malt are used as conventional raw materials. Worldwide, 85–90% of beer production is now produced with adjuvants, with wide variations on different continents. This review proposes the use of two other cereals as raw materials in the manufacture of beer, corn and sorghum, highlighting the advantages it recommends in this regard and the disadvantages, so that they are removed in technological practice. The use of these cereals as adjuvants in brewing has been known for a long time. Recently, research has intensified regarding the use of these cereals (including in the malted form) to obtain new assortments of beer from 100% corn malt or 100% sorghum malt. There is also great interest in obtaining gluten-free beer assortments, new nonalcoholic or low-alcohol beer assortments, and beers with an increased shelf life, by complying with current food safety regulations, under which maize and sorghum can be used in manufacturing recipes.
Collapse
|
16
|
Chibuzor-Onyema IE, Ezeokoli OT, Sulyok M, Notununu I, Petchkongkaew A, Elliott CT, Adeleke RA, Krska R, Ezekiel CN. Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Res Int 2021; 143:110241. [PMID: 33992353 DOI: 10.1016/j.foodres.2021.110241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/16/2022]
Abstract
Ogi is a fermented cereal beverage, made primarily from maize (Zea mays) and rarely from millets. Unlike maize-based ogi, little is known about the bacterial community and mycotoxin profile during the production of millet-based ogi. Therefore, the bacterial community dynamics and mycotoxin reduction during ogi processing from three millet varieties were investigated using next-generation sequencing of the 16S rRNA gene and liquid chromatography-tandem mass spectrometry, respectively. A total of 1163 amplicon sequence variants (ASVs) were obtained, with ASV diversity across time intervals influenced by processing stage and millet variety. ASV distribution among samples suggested that the souring stage was more influenced by millet variety than the steeping stage, and that souring may be crucial for the quality attributes of the ogi. Furthermore, bacterial community structure during steeping and souring was significantly differentiated (PERMANOVA, P < 0.05) between varieties, with close associations observed for closely-related millet varieties. Taxonomically, Firmicutes, followed by Actinobacteria, Bacteroidetes, Cyanobacteria and Proteobacteria phyla were relatively abundant (>1%). Lactic acid bacteria, such as Burkholderia-Caballeronia-Paraburkholderia, Lactobacillus, Lactococcus and Pediococcus, dominated most fermentation stages, suggesting their roles as key fermentative and functional bacteria in relation to mycotoxin reduction. About 52-100%, 58-100% and 100% reductions in mycotoxin (aflatoxins, beauvericin, citrinin, moniliformin, sterigmatocystin and zearalenone) concentrations were recorded after processing of white fonio, brown fonio and finger millet, respectively, into ogi. This study provides new knowledge of the dominant bacterial genera vital for the improvement of millet-based ogi through starter culture development and as well, elucidates the role of processing in reducing mycotoxins in millet ogi.
Collapse
Affiliation(s)
| | - Obinna T Ezeokoli
- Pathogenic Yeast Research Group, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Michael Sulyok
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria
| | - Iviwe Notununu
- Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council-Institute for Soil, Climate and Water, Pretoria, South Africa; Department of Biochemistry, Genetics and Microbiology, University of Pretoria, South Africa
| | - Awanwee Petchkongkaew
- School of Food Science and Technology, Faculty of Science and Technology, Thammasat University (Rangsit Campus), Pathumthani, Thailand; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Christopher T Elliott
- Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Rasheed A Adeleke
- Unit for Environmental Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| | - Rudolf Krska
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria; Institute for Global Food Security, School of Biological Sciences, Queens University Belfast, Belfast BT9 5BN, Northern Ireland, United Kingdom
| | - Chibundu N Ezekiel
- Department of Microbiology, Babcock University, Ilishan Remo, Ogun State, Nigeria; Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad Lorenz-Str. 20, A-3430 Tulln, Austria.
| |
Collapse
|
17
|
Fentie EG, Emire SA, Demsash HD, Dadi DW, Shin JH. Cereal- and Fruit-Based Ethiopian Traditional Fermented Alcoholic Beverages. Foods 2020; 9:foods9121781. [PMID: 33271792 PMCID: PMC7761231 DOI: 10.3390/foods9121781] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 12/05/2022] Open
Abstract
Traditional fermented alcoholic beverages are drinks produced locally using indigenous knowledge, and consumed near the vicinity of production. In Ethiopia, preparation and consumption of cereal- and fruit-based traditional fermented alcoholic beverages is very common. Tella, Borde, Shamita, Korefe, Cheka, Tej, Ogol, Booka, and Keribo are among the popular alcoholic beverages in the country. These beverages have equal market share with commercially produced alcoholic beverages. Fermentation of Ethiopian alcoholic beverages is spontaneous, natural and uncontrolled. Consequently, achieving consistent quality in the final product is the major challenge. Yeasts and lactic acid bacteria are the predominate microorganisms encountered during the fermentation of these traditional alcoholic beverages. In this paper, we undertake a review in order to elucidate the physicochemical properties, indigenous processing methods, nutritional values, functional properties, fermenting microorganisms and fermentation microbial dynamics of Ethiopian traditional alcoholic beverages. Further research will be needed in order to move these traditional beverages into large-scale production.
Collapse
Affiliation(s)
- Eskindir Getachew Fentie
- College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa 16417, Ethiopia;
- Department of Applied Biosciences, Kyungpook National University, Daegu 41900, Korea
| | - Shimelis Admassu Emire
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O. Box 385, King George VI Street, Addis Ababa 16417, Ethiopia; (S.A.E.); (H.D.D.)
| | - Hundessa Dessalegn Demsash
- School of Chemical and Bio-Engineering, Addis Ababa Institute of Technology, Addis Ababa University, P.O. Box 385, King George VI Street, Addis Ababa 16417, Ethiopia; (S.A.E.); (H.D.D.)
| | - Debebe Worku Dadi
- Department of Food Engineering and Postharvest Technology, Institute of Technology, Ambo University, Ambo 2040, Ethiopia;
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41900, Korea
- Correspondence: ; Tel.: +82-53-950-5716
| |
Collapse
|