1
|
Liu C, Guo H, Yan S, Wang Y. Control of paleoclimate and paleoweathering on chromium contents in a non-ultramafic aquifer hosting high chromium groundwater. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:316. [PMID: 39002037 DOI: 10.1007/s10653-024-02097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Cr(VI) is a carcinogen with proven mutagenic and genotoxic effects. The effects of the depositional environment (e.g., paleoweathering, paleoclimate, and paleoredox condition) on Cr enrichment in non-ultramafic aquifer solids are unclear. In this study, we presented the sedimentary characteristics of a borehole from a typical non-ultramafic aquifer with high Cr groundwater in Jingbian, central Ordos Basin, China. Chromium was enriched in the K1h sandstone aquifer, especially at depths of 400-500 m, with the highest value of mass transport coefficient (τAl,Cr) up to 92.13% and τAl,Fe up to 33.5%. The provenance of aquifer Cr was predominantly intermediate and felsic igneous rocks with a mafic rock mixture. This mafic source was inferred from Cr-rich granodiorite and mafic/ultramafic rocks in the Yinshan (Daqingshan-Wulashan) Block, northern Ordos Basin. The Cr-rich aquifer in K1h was developed due to a moderate chemical index of alteration (CIA) (mean, 56.7) under relatively warm and humid paleoclimate, as evidenced by high CIA-temperature (CIA-Temp) (mean, 6.79 °C) and paleoclimatic index values (mean, 0.40). Fe-Mn redox cycling in the oxic to suboxic environments contributed to aquifer Cr accumulation. Using path analysis, we identified that paleoclimate created favorable weathering conditions and enrichment of Fe contributed to the formation of high-Cr aquifers. The study reveals the formation of positive Cr anomalies in non-ultramafic aquifers, which is the potential source of groundwater Cr, and highlights the effects of depositional factors on Cr accumulation during aquifer deposition or early diagenesis. It can provide new insights into the natural processes of high-Cr sediments occurring in non-ultramafic aquifers.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China.
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Song Yan
- Beijing Water Business Doctor Co. Ltd, Beijing, 100024, China
| | - Yutong Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
- Key Laboratory of Groundwater Conservation of MWR & School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| |
Collapse
|
2
|
Li H, Zhang H, Chang F, Liu Q, Zhang Y, Liu F, Zhang X. Sedimentary DNA for tracking the long-term changes in biodiversity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17039-17050. [PMID: 36622608 DOI: 10.1007/s11356-023-25130-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Understanding long-term dynamics is vitally important for explaining current biodiversity patterns and setting conservation goals in a changing world. However, the changes in biodiversity in time and space, particularly the dynamics at the centuries or even longer time scales, are poorly documented because of a lack of continuous monitoring data. The sedimentary DNA (sedDNA) has a great potential for paleo-community reconstruction, and it has recently been used as a powerful tool to characterize past dynamics in terms of biodiversity over geological timescales. In particular, it is useful for prokaryotes and eukaryotes that do not fossilize; hence, it is revolutionizing the scope of paleoecological research. Here, a "Research Weaving" method was performed with systematic maps and bibliometric webs based on the Web of Science for Science Citation Index Expanded, presenting a comprehensive landscape of the sedDNA that traces biological dynamics. We identified that most sedDNA-based studies have focused on microbial dynamics and on using samples from multitypes of sediments. This review summarized the advantages and common applications of sedDNA, focused on the biodiversity in microbial communities, and provided an outlook for the future of sedDNA research.
Collapse
Affiliation(s)
- Haoyu Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China.
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Yang Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| |
Collapse
|
3
|
Xu Y, Deng Y, Zheng T, Du Y, Jiang H, Pi K, Xie X, Gan Y, Ma T, Wang Y. New evidence for linking the formation of high arsenic aquifers in the central Yangtze River Basin to climate change since Last Glacial Maximum. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129684. [PMID: 36104910 DOI: 10.1016/j.jhazmat.2022.129684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/11/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
The prevalence of arsenic (As)-affected groundwater in the Late Pleistocene and Holocene aquifers leads to serious arsenicosis worldwide. However, the geogenic foundational processes underlying the high As aquifers remain elusive. Here we present joint lines of evidences from chronological, sediment geochemical and geomicrobial analysis that climate change since the Last Glacial Maximum (LGM) initiates the genesis of high As aquifers in the central Yangtze River Basin, which represents Quaternary alluvial-lacustrine floodplains affected by arsenicosis occurrence. Optically stimulated luminescence-based sediments dating and grain size characterization indicate that the LGM depositional boundary also separates the Late-Pleistocene/Holocene high arsenic aquifers from the underlying arsenic-depleted aquifers. Further examination of solid-phase As/Fe/S speciation and associated microbial communities function suggests that the pre-LGM depositional environments characteristic of S metabolism engender the fixation of As in pyrite, whereas during the post-LGM period climate change to warm and humid leads to As repartitioning to Fe/Mn oxides in response to strong chemical weathering. This may have contributed to a dynamic fate of As in the post-LGM depositional environments and thus a highly variable aqueous As concentrations over depth. Our results highlight the important roles of climate change has played in the genesis of high As aquifers, with implications for other LGM-affected regions worldwide as well as for the evolution of high arsenic aquifers under future climate change.
Collapse
Affiliation(s)
- Yuxiao Xu
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yamin Deng
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Tianliang Zheng
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Yao Du
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yiqun Gan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Teng Ma
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, China University of Geosciences, Wuhan 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
4
|
Takahashi M, Wada K, Takano Y, Matsuno K, Masuda Y, Arai K, Murayama M, Tomaru Y, Tanaka K, Nagasaki K. Chronological distribution of dinoflagellate-infecting RNA virus in marine sediment core. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145220. [PMID: 33517015 DOI: 10.1016/j.scitotenv.2021.145220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
A bivalve-killing marine dinoflagellate, Heterocapsa circularisquama, is susceptible to the infectious single-stranded RNA virus, Heterocapsa circularisquama RNA virus (HcRNAV). The ecological relationship between H. circularisquama and HcRNAV was intensively studied from 2001 through 2005; however, only limited data are available for the ecological dynamics of HcRNAV before 2001. In this study, we applied radiometric dating and reverse transcription PCR (RT-PCR) to determine the chronological distribution of HcRNAV in a marine sediment core sampled from the Uranouchi Inlet, Kochi, Japan, where H. circularisquama was first discovered. Our results show that HcRNAV had existed in the inlet long before its first bloom in 1988. Furthermore, five HcRNAV variants, phylogenetically distinguishable based on the nucleotide sequence of the major capsid protein (MCP) gene, were identified. These variants were found to be distributed throughout the core over time, suggesting that the HcRNAV sequences registered in the NCBI database are only a portion of the variants that have emerged in the history of HcRNAV diversification. Herein, we have verified the applicability of the retrospective approach for speculating the distribution of algal RNA viruses over time in aquatic environments.
Collapse
Affiliation(s)
- Michiko Takahashi
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kei Wada
- Department of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kyouhei Matsuno
- Japan Software Management, Yokohama 221-0056, Kanagawa, Japan
| | - Yuichi Masuda
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Kazuno Arai
- Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Masafumi Murayama
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan
| | - Yuji Tomaru
- Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Hatsukaichi 739-0452, Hiroshima, Japan
| | - Kouki Tanaka
- Usa Marine Biological Institute, Kochi University, Usa 781-1164, Kochi, Japan
| | - Keizo Nagasaki
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Kochi, Japan; Faculty of Agriculture and Marine Science, Kochi University, Nankoku 783-8502, Kochi, Japan; Center for Advanced Marine Core Research, Kochi University, Nankoku 783-8502, Kochi, Japan.
| |
Collapse
|
5
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|