1
|
Jakaria Al-Mujahidy SM, Kryukov K, Ikeo K, Saito K, Uddin ME, Ibn Sina AA. Functional genomic analysis of the isolated potential probiotic Lactobacillus delbrueckii subsp. indicus TY-11 and its comparison with other Lactobacillus delbrueckii strains. Microbiol Spectr 2024; 12:e0347023. [PMID: 38771133 PMCID: PMC11218508 DOI: 10.1128/spectrum.03470-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Probiotics refer to living microorganisms that exert a variety of beneficial effects on human health. On the contrary, they also can cause infection, produce toxins within the body, and transfer antibiotic-resistant genes to the other microorganisms in the digestive tract necessitating a comprehensive safety assessment. This study aimed to conduct functional genomic analysis and some relevant biochemical tests to uncover the probiotic potentials of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. The strain TY-11 was identified as Lactobacillus delbrueckii subsp. indicus, whose genome (1,916,674 bp) contained 1911 CDS, and no gene was identified for either antibiotic resistance or toxic metabolites. It carried genes for the degradation of toxic metabolites, treatment of lactose intolerance, toll-like receptor 2-dependent innate immune response, heat and cold shock, bile salts tolerance, and acidic pH tolerance. Genes were annotated for inhibiting pathogenic bacteria by inhibitory substances [bacteriocin: Helveticin-J (331 bp) and Enterolysin-A (275 bp), hydrogen peroxide, and acid]; blockage of adhesion sites; and competition for nutrients. The genes involved in its metabolic pathway were detected as suitable for digesting indigestible nutrients in the human gut. The TY-11 genome possessed an additional 37 core genes of subspecies indicus which were deficient in the core genome of the most popular subsp. bulgaricus. During the phenotypic testing, the isolate TY-11 demonstrated high antagonistic activity (inhibition zone of 21.33 ± 1.53 mm) against Escherichia coli ATCC 8739 and was not sensitive to any of the 10 tested antibiotics. This study was the first study to explore the molecular insights into probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus. IMPORTANCE This study aimed to conduct functional genomic analysis to uncover the probiotic potential of Lactobacillus delbrueckii subsp. indicus TY-11 isolated from native yogurt in Bangladesh. We also performed transmission electron microscopic (TEM) analysis, comparative genomic study as well as phylogenetic tree construction with 332 core genes from 262 genomes. In our current investigation, we revealed a number of common and unique excellences of the probiotic Lactobacillus delbrueckii subsp. indicus TY-11 that are likely to be important to illustrate its intestinal residence and probiotic roles. This is the first study to explore the molecular insights into intestinal residence and probiotic roles, including antimicrobial activities and antibiotic sensitivity, of a representative strain (TY-11) of Lactobacillus delbrueckii subsp. indicus.
Collapse
Affiliation(s)
- Sk. Md. Jakaria Al-Mujahidy
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kirill Kryukov
- Center for Genome Informatics, Joint Support-Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kazuho Ikeo
- DNA Data Analysis Laboratory, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Kei Saito
- Laboratory of Physics and Cell Biology, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Md. Ekhlas Uddin
- Department of Biochemistry and Molecular Biology, Gono Bishwabidyalay, Savar, Dhaka, Bangladesh
| | - Abu Ali Ibn Sina
- Australian Institute for Bioengineering & Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, Australia
- Department of Systems Biology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Salman MK, Abuqwider J, Mauriello G. Anti-Quorum Sensing Activity of Probiotics: The Mechanism and Role in Food and Gut Health. Microorganisms 2023; 11:microorganisms11030793. [PMID: 36985366 PMCID: PMC10056907 DOI: 10.3390/microorganisms11030793] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Background: Quorum sensing (QS) is a cell-to-cell communication mechanism that occurs between inter- and intra-bacterial species and is regulated by signaling molecules called autoinducers (AIs). It has been suggested that probiotics can exert a QS inhibitory effect through their metabolites. Purpose: To provide an overview of (1) the anti-QS activity of probiotics and its mechanism against foodborne pathogenic and spoilage bacteria; (2) the potential role of the QS of probiotics in gut health; and (3) the impact of microencapsulation on QS. Results: Lactobacillus species have been extensively studied for their anti-QS activity and have been found to effectively disrupt QS in vitro. However, their effectiveness in a food matrix is yet to be determined as they interfere with the AI receptor or its synthesis. QS plays an important role in both the biofilm formation of probiotics and pathogenic bacteria. Moreover, in vitro and animal studies have shown that QS molecules can modulate cytokine responses and gut dysbiosis and maintain intestinal barrier function. In this scenario, microencapsulation was found to enhance AI activity. However, its impact on the anti-QS activity of probiotics and its underlying mechanism remains unclear. Conclusions: Probiotics are potential candidates to block QS activity in foodborne pathogenic and food spoilage bacteria. Microencapsulation increases QS efficacy. However, more research is still needed for the identification of the QS inhibitory metabolites from probiotics and for the elucidation of the anti-QS mechanism of probiotics (microcapsules and free cells) in food and the human gut.
Collapse
|
3
|
Purdel C, Ungurianu A, Adam-Dima I, Margină D. Exploring the potential impact of probiotic use on drug metabolism and efficacy. Biomed Pharmacother 2023; 161:114468. [PMID: 36868015 DOI: 10.1016/j.biopha.2023.114468] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023] Open
Abstract
Probiotics are frequently consumed as functional food and widely used as dietary supplements, but are also recommended in treating or preventing various gastrointestinal diseases. Therefore, their co-administration with other drugs is sometimes unavoidable or even compulsory. Recent technological developments in the pharmaceutical industry permitted the development of novel drug-delivery systems for probiotics, allowing their addition to the therapy of severely ill patients. Literature data regarding the changes that probiotics could impose on the efficacy or safety of chronic medication is scarce. In this context, the present paper aims to review probiotics currently recommended by the international medical community, to evaluate the relationship between gut microbiota and various pathologies with high impact worldwide and, most importantly, to assess the literature reports concerning the ability of probiotics to influence the pharmacokinetics/pharmacodynamics of some widely used drugs, especially for those with narrow therapeutic indexes. A better understanding of the potential influence of probiotics on drug metabolism, efficacy and safety could contribute to improving therapy management, facilitating individualized therapy and updating treatment guidelines.
Collapse
Affiliation(s)
- Carmen Purdel
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Anca Ungurianu
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania.
| | - Ines Adam-Dima
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Toxicology, Traian Vuia 6, Bucharest 020956, Romania
| | - Denisa Margină
- "Carol Davila" University of Medicine and Pharmacy, Faculty of Pharmacy, Department of Biochemistry, Traian Vuia 6, Bucharest 020956, Romania
| |
Collapse
|
4
|
Influence of modified governing liquid on shelf-life parameters of high-moisture mozzarella cheese. Food Res Int 2022; 159:111627. [DOI: 10.1016/j.foodres.2022.111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
|
5
|
Pirmanesh S, Kermanshahi RK, Gharavi S, Mobarak Qamsari E. Cloning, Expression, and Purification of a GDSL-like Lipase/Acylhydrolase from a Native Lipase-Producing Bacterium, Lactobacillus fermentum. IRANIAN BIOMEDICAL JOURNAL 2022; 26:153-9. [PMID: 34894644 PMCID: PMC8987412 DOI: 10.52547/ibj.26.2.153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/04/2021] [Indexed: 11/05/2022]
Abstract
Background Lipase enzymes are of great importance in various industries. Currently, extensive efforts have been focused on exploring new lipase producer microorganism as well as genetic and protein engineering of available lipases to improve their functional features. Methods For screening lipase-producing lactobacilli, isolated strains were inoculated onto tributyrin agar plates. Molecular identification of lipase-producing Lactobacilli was performed by sequencing the 16Sr DNA gene, and a phylogenetic tree was constructed. The LAF_RS05195 gene, encoding lipase protein in L. fermentum isolates, was identified using specific primers, amplified by PCR (918 bp) and cloned into the pET28a (+) vector. The recombinant proteins were expressed 2, 4, 6, and 12 hours after induction with IPTG and assessed using the SDS polyacrylamide gel electrophoresis (SDS-PAGE). Enzymatic activity of the purified recombinant protein was measured at 410 nm in the presence of ρ-NPA and ρ-NPP. Results Among five identified native lipase-producing isolates, one isolate showed 98% similarity with Enterococcus species. The other four isolates indicated 98% similarity to L. fermentum. After purification steps with Ni-NTA column, a single protein band of about 34 kDa was detected on SDS-PAGE gel. The enzymatic activity of purified recombinant protein alongside ρ-NPA and ρ-NPP was measured to be 0.6 U/ml and 0.2 U/ml, respectively. Conclusion In the present research, a novel lipase/esterase from L. fermentum was cloned and expressed. The novel lipase/esterase has the merit to be further studied due to its substrate specificity.
Collapse
Affiliation(s)
- Samira Pirmanesh
- Department of Biotechnology, Faculty of Biological Sciences , Alzahra University, Tehran, Iran
| | - Rouha Kasra Kermanshahi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Sara Gharavi
- Department of Biotechnology, Faculty of Biological Sciences , Alzahra University, Tehran, Iran
| | - Elahe Mobarak Qamsari
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| |
Collapse
|
6
|
Decoding the Gene Variants of Two Native Probiotic Lactiplantibacillus plantarum Strains through Whole-Genome Resequencing: Insights into Bacterial Adaptability to Stressors and Antimicrobial Strength. Genes (Basel) 2022; 13:genes13030443. [PMID: 35327997 PMCID: PMC8953754 DOI: 10.3390/genes13030443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
In this study, whole-genome resequencing of two native probiotic Lactiplantibacillus plantarum strains—UTNGt21A and UTNGt2—was assessed in order to identify variants and perform annotation of genes involved in bacterial adaptability to different stressors, as well as their antimicrobial strength. A total of 21,906 single-nucleotide polymorphisms (SNPs) were detected in UTNGt21A, while 17,610 were disclosed in the UTNGt2 genome. The comparative genomic analysis revealed a greater number of deletions, transversions, and transitions within the UTNGt21A genome, while a small difference in the number of insertions was detected between the strains. A divergent number of types of variant annotations were detected in both strains, and categorized in terms of low, moderate, and high modifier impact on the protein effectiveness. Although both native strains shared common specific genes involved in the stress response to the gastrointestinal environment, which may qualify as a putative probiotic (bile salt, acid, temperature, osmotic stress), they were different in their antimicrobial gene cluster organization, with UTNGt21A displaying a complex bacteriocin gene arrangement and dissimilar gene variants that might alter their defense mechanisms and overall inhibitory capacity. The genome comparison revealed 34 and 9 genomic islands (GIs) in the UTNGt21A and UTNGt2 genomes, respectively, with the overrepresentation of genes involved in defense mechanisms and carbohydrate utilization. In addition, pan-genome analysis disclosed the presence of various strain-specific genes (shell genes), suggesting a high genome variation between strains. This genome analysis illustrates that the bacteriocin signature and gene variants reflect a niche-inherent pattern. These extensive genomic datasets will guide us to understand the potential benefits of the native strains and their utility in the food or pharmaceutical sectors.
Collapse
|
7
|
Fragomeno M, Assad S, Mobili P, Peruzzo PJ, Minnaard J, Pérez PF. Biomodification of acenocoumarol by bifidobacteria. FEMS Microbiol Lett 2021; 368:6371100. [PMID: 34529059 DOI: 10.1093/femsle/fnab125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The increased interest of consumers in probiotic foods requires a deeper knowledge on the possible interactions with drugs, because their pharmacological properties could be modified. In this context, these studies are relevant for drugs such as acenocoumarol, whose dosage must be controlled due to, among other factors, food-drug interactions. Acenocoumarol is an oral anticoagulant with a narrow therapeutic range. The aim of the present research is to evaluate, in vitro, the effect of bifidobacteria on acenocoumarol. The drug was incubated with Bifidobacterium bifidum CIDCA 5310 or Bifidobacterium adolescentis CIDCA 5317 in MRS broth at 37°C for 24 h in anaerobic conditions. The effect of incubation with sterilized spent culture supernatants (SSCS) was also evaluated. Analysis by RP-HPLC showed that both bifidobacterial strains reduced the area of the acenocoumarol peak and two new peaks were evidenced. In addition, a decrease in the intensity of the bands at 1650, 1390 and 1110/cm was observed in the FTIR spectroscopic determinations. Moreover, a new band appeared at 1720/cm. No effect on the drug was observed when incubation was performed with SSCS. The present study showed a significant change in the concentration of the anticoagulant after incubation with bifidobacteria and results are compatible with biomodification of the drug due to enzymatic activity of bifidobacteria.
Collapse
Affiliation(s)
- Melisa Fragomeno
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Sabrina Assad
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo Mobili
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina
| | - Pablo J Peruzzo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas - INIFTA (UNLP - CONICET CCT La Plata), Diag. 113 y 64, CC 16 Suc. 4 (B1904DPI) La Plata, Argentina
| | - Jessica Minnaard
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| | - Pablo Fernando Pérez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA)-Universidad Nacional de La Plata (UNLP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET- CCT La Plata) and Consejo de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA). Calle 47 y 116, CP 1900, La Plata, Argentina.,Área Microbiología e Inmunología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, UNLP. Calle 47 y 115, CP 1900, La Plata, 13, Argentina
| |
Collapse
|
8
|
Kosmerl E, Rocha-Mendoza D, Ortega-Anaya J, Jiménez-Flores R, García-Cano I. Improving Human Health with Milk Fat Globule Membrane, Lactic Acid Bacteria, and Bifidobacteria. Microorganisms 2021; 9:341. [PMID: 33572211 PMCID: PMC7914750 DOI: 10.3390/microorganisms9020341] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
The milk fat globule membrane (MFGM), the component that surrounds fat globules in milk, and its constituents have gained significant attention for their gut function, immune-boosting properties, and cognitive-development roles. The MFGM can directly interact with probiotic bacteria, such as bifidobacteria and lactic acid bacteria (LAB), through interactions with bacterial surface proteins. With these interactions in mind, increasing evidence supports a synergistic effect between MFGM and probiotics to benefit human health at all ages. This important synergy affects the survival and adhesion of probiotic bacteria through gastrointestinal transit, mucosal immunity, and neurocognitive behavior in developing infants. In this review, we highlight the current understanding of the co-supplementation of MFGM and probiotics with a specific emphasis on their interactions and colocalization in dairy foods, supporting in vivo and clinical evidence, and current and future potential applications.
Collapse
Affiliation(s)
| | | | | | - Rafael Jiménez-Flores
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| | - Israel García-Cano
- Department of Food Science and Technology, The Ohio State University, Columbus, OH 43210, USA; (E.K.); (D.R.-M.); (J.O.-A.)
| |
Collapse
|