1
|
Sousa KRS, de Melo Ferreira Dantas W, de Oliveira LL, Cardoso SA, Dos Santos Araújo R, Guimarães SEF. Effect of vaccination against Mycoplasma hyopneumoniae on divergent pig genetic groups. Res Vet Sci 2024; 180:105417. [PMID: 39288683 DOI: 10.1016/j.rvsc.2024.105417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
The bacterium Mycoplasma hyopneumoniae (Mhp) causes a chronic infectious respiratory disease in pigs, leading to important economic losses. This study aimed to compare the immune response of the local Piau breed and a commercial line to Mhp vaccination. For this, two phases were carried out. In the first, gene expression of toll-like receptors (TLR2, TLR4, TLR6, and TLR10) and cytokines (IL2, IL6, IL8, IL10, IL12, IL13, TNFα, and TGFβ) was assessed in porcine blood mononuclear cells (PBMC) from the two genetic groups before and after vaccination. In the second experiment, nitric oxide production, specific antibodies, and gene expression of toll-like receptors and cytokines were evaluated in bronchoalveolar lavage fluid (BALF) cells of vaccinated and unvaccinated pigs. After vaccination against Mhp, TLR2, TLR4, TLR6, TLR10, IL6, TNFα, and TGFβ expression levels were elevated in PBMC from commercial animals, and TLR6, TLR10, and TGFβ expression levels were elevated in PBMC from the Piau group. Vaccination also increased the production of Mhp-specific IgG antibodies in BALF cells in the Piau breed. Comparison of the two genetic groups revealed differences in TNFα and IL10 expression in BALF cells. These results show that Piau pigs have different immune responses to vaccination compared with commercial animals. It is worth noting that these genetic differences between both genetic groups may be related to phenotypic differences in Mhp resistance or susceptibility.
Collapse
Affiliation(s)
- Katiene Regia Silva Sousa
- Departamento de Oceanografia e Limnologia, Universidade Federal do Maranhão, São Luís 65080-805, Brazil; Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-000, Brazil.
| | | | | | - Silvia Almeida Cardoso
- Departamento de Enfermagem e Medicina, Universidade Federal de Viçosa, Minas Gerais 36570-000, Brazil.
| | - Renan Dos Santos Araújo
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, 78698-000, Pontal do Araguaia, Mato Grosso, Brazil
| | | |
Collapse
|
2
|
Shilpha J, Lee J, Kwon JS, Lee HA, Nam JY, Jang H, Kang WH. An improved bacterial mRNA enrichment strategy in dual RNA sequencing to unveil the dynamics of plant-bacterial interactions. PLANT METHODS 2024; 20:99. [PMID: 38951818 PMCID: PMC11218159 DOI: 10.1186/s13007-024-01227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
BACKGROUND Dual RNA sequencing is a powerful tool that enables a comprehensive understanding of the molecular dynamics underlying plant-microbe interactions. RNA sequencing (RNA-seq) poses technical hurdles in the transcriptional analysis of plant-bacterial interactions, especially in bacterial transcriptomics, owing to the presence of abundant ribosomal RNA (rRNA), which potentially limits the coverage of essential transcripts. Therefore, to achieve cost-effective and comprehensive sequencing of the bacterial transcriptome, it is imperative to devise efficient methods for eliminating rRNA and enhancing the proportion of bacterial mRNA. In this study, we modified a strand-specific dual RNA-seq method with the goal of enriching the proportion of bacterial mRNA in the bacteria-infected plant samples. The enriched method involved the sequential separation of plant mRNA by poly A selection and rRNA removal for bacterial mRNA enrichment followed by strand specific RNA-seq library preparation steps. We assessed the efficiency of the enriched method in comparison to the conventional method by employing various plant-bacterial interactions, including both host and non-host resistance interactions with pathogenic bacteria, as well as an interaction with a beneficial rhizosphere associated bacteria using pepper and tomato plants respectively. RESULTS In all cases of plant-bacterial interactions examined, an increase in mapping efficiency was observed with the enriched method although it produced a lower read count. Especially in the compatible interaction with Xanthmonas campestris pv. Vesicatoria race 3 (Xcv3), the enriched method enhanced the mapping ratio of Xcv3-infected pepper samples to its own genome (15.09%; 1.45-fold increase) and the CDS (8.92%; 1.49-fold increase). The enriched method consistently displayed a greater number of differentially expressed genes (DEGs) than the conventional RNA-seq method at all fold change threshold levels investigated, notably during the early stages of Xcv3 infection in peppers. The Gene Ontology (GO) enrichment analysis revealed that the DEGs were predominantly enriched in proteolysis, kinase, serine type endopeptidase and heme binding activities. CONCLUSION The enriched method demonstrated in this study will serve as a suitable alternative to the existing RNA-seq method to enrich bacterial mRNA and provide novel insights into the intricate transcriptomic alterations within the plant-bacterial interplay.
Collapse
Affiliation(s)
- Jayabalan Shilpha
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Junesung Lee
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Su Kwon
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hyun-Ah Lee
- Division of Smart Horticulture, Yonam College, Cheonan, 31005, Republic of Korea
| | - Jae-Young Nam
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Hakgi Jang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Won-Hee Kang
- Department of Horticulture, Division of Applied Life Science (BK21 Four Program), Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
3
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Merker Breyer G, Malvessi Cattani A, Silveira Schrank I, Maboni Siqueira F. The influence of regulatory elements on Mycoplasma hyopneumoniae 7448 transcriptional response during oxidative stress and heat shock. Mol Biol Rep 2021; 49:139-147. [PMID: 34676505 DOI: 10.1007/s11033-021-06851-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The comprehension of genome organization and gene modulation is essential for understanding pathogens' infection mechanisms. Mycoplasma hyopneumoniae 7448 genome is organized in transcriptional units (TUs), which are flanked by regulatory elements such as putative promoters, terminators and repetitive sequences. Yet the relationship between the presence of these elements and bacterial responses during stress conditions remains unclear. Thus, in this study, in silico and RT-qPCR analyses were associated to determine the effect of regulatory elements in gene expression regulation upon heat shock and oxidative stress conditions. METHODS AND RESULTS Thirteen TU's organizational profiles were found based on promoters and terminators distribution. Differential expression in genes sharing the same TUs was observed, suggesting the activity of internal regulatory elements. Moreover, 88.8% of tested genes were differentially expressed under oxidative stress in comparison to the control condition, being 81.3% of them surrounded by their own regulatory elements. Similarly, under heat shock, 44.4% of the genes showed regulation when compared to control condition, being 75.0% of them surrounded by their own regulatory elements. CONCLUSIONS Altogether, this data suggests the activity of internal regulatory elements in gene modulation of M. hyopneumoniae 7448 transcription.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Amanda Malvessi Cattani
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Irene Silveira Schrank
- Graduate Program in Cell and Molecular Biology, Biotechnology Center, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratory of Veterinary Bacteriology, Veterinary Pathology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
5
|
Integrating microbiome, transcriptome and metabolome data to investigate gastric disease pathogenesis: a concise review. Expert Rev Mol Med 2021. [DOI: 10.1017/erm.2021.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Microbiome, the study of microbial communities in specific environments, has developed significantly since the Human Microbiome Project began. Microbiomes have been associated with changes within environmental niches and the development of various diseases. The development of high-throughput technology such as next-generation sequencing has also allowed us to perform transcriptome studies, which provide accurate functional profiling data. Metabolome studies, which analyse the metabolites found in the environment, are the most direct environmental condition indicator. Although each dataset provides valuable information on its own, the integration of multiple datasets provides a deeper understanding of the relationship between the host, agent and environment. Therefore, network analysis using multiple datasets might give a clearer understanding of disease pathogenesis.
Collapse
|