1
|
Narimisa N, Khoshbayan A, Gharaghani S, Razavi S, Jazi FM. Inhibitory effects of nafcillin and diosmin on biofilm formation by Salmonella Typhimurium. BMC Microbiol 2024; 24:522. [PMID: 39695365 DOI: 10.1186/s12866-024-03646-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE The foodborne pathogen Salmonella enterica serovar Typhimurium causes self-limiting gastroenteritis in humans and is difficult to eliminate due to its ability to adhere to surfaces and form biofilms that exhibit high resistance to antimicrobial agents. To explore alternative strategies for biofilm treatment, it is essential to investigate novel agents that inhibit Salmonella biofilms. METHOD In this study, we investigated the minimum biofilm inhibitory concentrations (MBICs) and minimum biofilm eradication concentrations (MBECs) of nafcillin and diosmin, both previously identified as Lon protease inhibitors, against biofilms formed by S. Typhimurium. Furthermore, we examined the expression of genes associated with the type II toxin-antitoxin system to enhance our understanding of the impact of these inhibitors. RESULTS The findings indicated a strong antibiofilm effect of nafcillin, with MBIC and MBEC values of 8 µg/mL and 32 µg/mL, respectively. These results were confirmed by field emission scanning electron microscopy (FE-SEM), which showed that biofilm formation was reduced in the presence of nafcillin. Additionally, it revealed morphological changes in the bacteria within the nafcillin-treated biofilms. Furthermore, gene expression analyses demonstrated a significant reduction in the expression of type II TA system genes following treatment with nafcillin and diosmin. CONCLUSION This study highlights the effectiveness of nafcillin in disrupting the biofilms of S. Typhimurium. These results suggest promising avenues for the development of novel therapeutic strategies targeting biofilms associated with S. Typhimurium.
Collapse
Affiliation(s)
- Negar Narimisa
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Khoshbayan
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Shabnam Razavi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Faramarz Masjedian Jazi
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Dai Y, Liu R, Yue Y, Song N, Jia H, Ma Z, Gao X, Zhang M, Yuan X, Liu Q, Liu X, Li B, Wang W. A c-di-GMP binding effector STM0435 modulates flagellar motility and pathogenicity in Salmonella. Virulence 2024; 15:2331265. [PMID: 38532247 PMCID: PMC10978029 DOI: 10.1080/21505594.2024.2331265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/06/2024] [Indexed: 03/28/2024] Open
Abstract
Flagella play a crucial role in the invasion process of Salmonella and function as a significant antigen that triggers host pyroptosis. Regulation of flagellar biogenesis is essential for both pathogenicity and immune escape of Salmonella. We identified the conserved and unknown function protein STM0435 as a new flagellar regulator. The ∆stm0435 strain exhibited higher pathogenicity in both cellular and animal infection experiments than the wild-type Salmonella. Proteomic and transcriptomic analyses demonstrated dramatic increases in almost all flagellar genes in the ∆stm0435 strain compared to wild-type Salmonella. In a surface plasmon resonance assay, purified STM0435 protein-bound c-di-GMP had an affinity of ~8.383 µM. The crystal structures of apo-STM0435 and STM0435&c-di-GMP complex were determined. Structural analysis revealed that R33, R137, and D138 of STM0435 were essential for c-di-GMP binding. A Salmonella with STM1987 (GGDEF protein) or STM4264 (EAL protein) overexpression exhibits completely different motility behaviours, indicating that the binding of c-di-GMP to STM0435 promotes its inhibitory effect on Salmonella flagellar biogenesis.
Collapse
Affiliation(s)
- Yuanji Dai
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ruirui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yingying Yue
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Nannan Song
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Haihong Jia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhongrui Ma
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueyan Gao
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Min Zhang
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xilu Yuan
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaoyu Liu
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bingqing Li
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Key Lab for Biotech-Drugs of National Health Commission, Shandong First Medical University, Jinan, Shandong, China
- Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, China
| | - Weiwei Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
3
|
Özdemir C, Erdoğan İ, Özdemir K, Akçelik N, Akçelik M. Comparative analysis of biofilm structures in Salmonella Typhimurium DMC4 strain and its dam and seqA gene mutants using Fourier transform infrared spectroscopy (FT-IR) and Raman spectroscopy methods. Braz J Microbiol 2024:10.1007/s42770-024-01563-z. [PMID: 39511037 DOI: 10.1007/s42770-024-01563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
It is well-established that the dam and seqA genes act in the biofilm production in Salmonella. However, the molecular basis underlying this activity remains unexplored. This study aims to address this gap in the literature. In this study, comparative Fourier Transform Infrared (FT-IR) Spectroscopy and Raman spectral analyses were conducted to investigate the molecular basis of decreases in swimming, swarming motility, and biofilm characteristics observed in the dam and seqA gene mutants of S. Typhimurium DMC4 wild-type strain. The comparative analysis revealed a pronounced reduction in proteins, lipids, carbohydrates, and nucleic acids within the biofilm structures of mutant strains. These findings confirm that these macromolecules are crucial for the integrity and functionality of biofilm structures. FT-IR analysis showed that while amide-I bands decreased in the biofilm structures of mutant strains, amide-II bands increased compared to the wild-type strain. Similarly, Raman analyses indicated an increase in amide-IV bonds and a decrease in amide-V bonds. The parallelism between FT-IR and Raman spectral analysis results, particularly regarding amide I, amide V, amide II, and amide IV bands, is noteworthy. Additionally, these findings may lead to the development of markers for rapidly diagnosing transitions from planktonic to biofilm form in Salmonella. The substantial decrease in β-glucans and lipids, including cellulose, within the biofilm matrix of mutant strains highlights the critical role these polymers play in swimming and swarming motility. Given the clinical and industrial importance of Salmonella biofilms, it is crucial to develop strategies to prevent biofilm formation and identify target molecules that can inhibit biofilm formation. The results of our study suggest that β-glucans and amides are essential targets in the effort to combat Salmonella biofilms.
Collapse
Affiliation(s)
- Caner Özdemir
- Department of Biology, Ankara University, Ankara, Turkey
| | - İbrahim Erdoğan
- Department of Agricultural Biotechnology, Ahi Evran University, Kırşehir, Turkey
| | - Kağan Özdemir
- Department of Statistics, Ankara University, Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | | |
Collapse
|
4
|
Laekas-Hameder M, Daigle F. Only time will tell: lipopolysaccharide glycoform and biofilm-formation kinetics in Salmonella species and Escherichia coli. J Bacteriol 2024; 206:e0031824. [PMID: 39315775 PMCID: PMC11500611 DOI: 10.1128/jb.00318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
In Gram-negative bacteria, LPS (lipopolysaccharide) has been thoroughly characterized and has been shown to play a major role in pathogenesis and bacterial defense. In Salmonella and Escherichia coli, LPS also influences biofilm development. However, the overall role of LPS glycoform in biofilm formation has not been conclusively settled, as there is a lack of consensus on the topic. Some studies show that LPS mutants produce less biofilm biomass than the wild-type strains, while others show that they produce more. This review summarizes current knowledge of LPS biosynthesis and explores the impact of defective steps on biofilm-related characteristics, such as motility, adhesion, auto-aggregation, and biomass production in Salmonella and E. coli. Overall, motility tends to decrease, while adhesion and auto-aggregation phenotypes tend to increase in most LPS-mutant strains. Interestingly, biofilm biomass of various LPS mutants revealed a clear pattern dependent on biofilm maturation time. Incubation times of less than 24 h resulted in a biofilm-defective phenotype compared to the wild-type, while incubation exceeding 24 h led to significantly higher levels of biofilm production. This explains conflicting results found in reports describing the same LPS mutations. It is therefore critical to consider the effect of biofilm maturation time to ascertain the effects of LPS glycoform on biofilm phenotype. Underlying reasons for such changes in biofilm kinetics may include changes in signalling systems affecting biofilm maturation and composition, and dynamic LPS modifications. A better understanding of the role of LPS in the evolution and modification of biofilms is crucial for developing strategies to disperse biofilms.
Collapse
Affiliation(s)
- Magdalena Laekas-Hameder
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - France Daigle
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
5
|
Li Y, Liang X, Chen N, Yuan X, Wang J, Wu Q, Ding Y. The promotion of biofilm dispersion: a new strategy for eliminating foodborne pathogens in the food industry. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39054781 DOI: 10.1080/10408398.2024.2354524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Food safety is a critical global concern due to its direct impact on human health and overall well-being. In the food processing environment, biofilm formation by foodborne pathogens poses a significant problem as it leads to persistent and high levels of food contamination, thereby compromising the quality and safety of food. Therefore, it is imperative to effectively remove biofilms from the food processing environment to ensure food safety. Unfortunately, conventional cleaning methods fall short of adequately removing biofilms, and they may even contribute to further contamination of both equipment and food. It is necessary to develop alternative approaches that can address this challenge in food industry. One promising strategy in tackling biofilm-related issues is biofilm dispersion, which represents the final step in biofilm development. Here, we discuss the biofilm dispersion mechanism of foodborne pathogens and elucidate how biofilm dispersion can be employed to control and mitigate biofilm-related problems. By shedding light on these aspects, we aim to provide valuable insights and solutions for effectively addressing biofilm contamination issues in food industry, thus enhancing food safety and ensuring the well-being of consumers.
Collapse
Affiliation(s)
- Yangfu Li
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xinmin Liang
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nuo Chen
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaoming Yuan
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, National Health Commission Science and Technology Innovation Platform for Nutrition and Safety of Microbial Food, Guangdong Provincial Key Laboratory of Microbial Safety and Health, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Xiang Y, Zhu K, Min K, Zhang Y, Liu J, Liu K, Han Y, Li X, Du X, Wang X, Huang Y, Li X, Peng Y, Yang C, Liu H, Liu H, Li X, Wang H, Wang C, Wang Q, Jia H, Yang M, Wang L, Wu Y, Cui Y, Chen F, Yang H, Baker S, Xu X, Yang J, Song H, Qiu S. Characterization of a Salmonella enterica serovar Typhimurium lineage with rough colony morphology and multidrug resistance. Nat Commun 2024; 15:6123. [PMID: 39033143 PMCID: PMC11271444 DOI: 10.1038/s41467-024-50331-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/03/2024] [Indexed: 07/23/2024] Open
Abstract
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of salmonellosis, and the emergence of multidrug-resistant pathovariants has become a growing concern. Here, we investigate a distinct rough colony variant exhibiting a strong biofilm-forming ability isolated in China. Whole-genome sequencing on 2,212 Chinese isolates and 1,739 publicly available genomes reveals the population structure and evolutionary history of the rough colony variants. Characterized by macro, red, dry, and rough (mrdar) colonies, these variants demonstrate enhanced biofilm formation at 28 °C and 37 °C compared to typical rdar colonies. The mrdar variants exhibit extensive multidrug resistance, with significantly higher resistance to at least five classes of antimicrobial agents compared to non-mrdar variants. This resistance is primarily conferred by an IncHI2 plasmid harboring 19 antimicrobial resistance genes. Phylogenomic analysis divides the global collections into six lineages. The majority of mrdar variants belong to sublineage L6.5, which originated from Chinese smooth colony strains and possibly emerged circa 1977. Among the mrdar variants, upregulation of the csgDEFG operons is observed, probably due to a distinct point mutation (-44G > T) in the csgD gene promoter. Pangenome and genome-wide association analyses identify 87 specific accessory genes and 72 distinct single nucleotide polymorphisms associated with the mrdar morphotype.
Collapse
Affiliation(s)
- Ying Xiang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Kunpeng Zhu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- Kaifeng Center for Disease Control and Prevention, Kaifeng, China
| | - Kaiyuan Min
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yaowen Zhang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
- Daxing Center for Disease Control and Prevention, Beijing, China
| | - Jiangfeng Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Kangkang Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yiran Han
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinge Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinying Du
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xin Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ying Huang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xinping Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yuqian Peng
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chaojie Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hongbo Liu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Xiaoying Li
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Hui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Chao Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Qi Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Huiqun Jia
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Mingjuan Yang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Ligui Wang
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fei Chen
- CAS Key Laboratory of Genome Sciences & Information, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.
| | - Juntao Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China.
| | - Hongbin Song
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| | - Shaofu Qiu
- Center for Disease Control and Prevention of Chinese PLA, Beijing, China.
| |
Collapse
|
7
|
Zhou G, Liu Y, Dong P, Mao Y, Zhu L, Luo X, Zhang Y. Airborne signals of Pseudomonas fluorescens modulate swimming motility and biofilm formation of Listeria monocytogenes in a contactless coculture system. Food Microbiol 2024; 120:104494. [PMID: 38431335 DOI: 10.1016/j.fm.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024]
Abstract
Bacterial volatile compounds (BVCs) facilitate interspecies communication in socio-microbiology across physical barriers, thereby influencing interactions between diverse species. The impact of BVCs emitted from Pseudomonas on the biofilm formation characteristics of Listeria monocytogenes within the same ecological niche has been scarcely investigated under practical conditions of food processing. The objective of this study was to explore the motility and biofilm formation characteristics of L. monocytogenes under the impact of Pseudomonas BVCs. It was revealed that BVCs of P. fluorescens, P. lundensis, and P. fragi significantly promoted swimming motility of L. monocytogenes (P < 0.05). As evidenced by crystal violet staining, the L. monocytogenes biofilms reached a maximum OD570 value of approximately 3.78 at 4 d, which was 0.65 units markedly higher than that of the control group (P < 0.05). Despite a decrease in adherent cells of L. monocytogenes biofilms among the BVCs groups, there was a remarkable increase in the abundance of extracellular polysaccharides and proteins with 3.58 and 4.90 μg/cm2, respectively (P < 0.05), contributing to more compact matrix architectures, which suggested that the BVCs of P. fluorescens enhanced L. monocytogenes biofilm formation through promoting the secretion of extracellular polymers. Moreover, the prominent up-regulated expression of virulence genes further revealed the positive regulation of L. monocytogenes under the influence of BVCs. Additionally, the presence of BVCs significantly elevated the pH and TVB-N levels in both the swimming medium and biofilm broth, thereby exhibiting a strong positive correlation with increased motility and biofilm formation of L. monocytogenes. It highlighted the crucial signaling regulatory role of BVCs in bacterial interactions, while also emphasizing the potential food safety risk associated with the hitchhiking behavior of L. monocytogenes, thereby shedding light on advancements in control strategies for food processing.
Collapse
Affiliation(s)
- Guanghui Zhou
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yunge Liu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Pengcheng Dong
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yanwei Mao
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Lixian Zhu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Xin Luo
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China
| | - Yimin Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an Shandong, 271018, China; National R&D Center for Beef Processing Technology, Tai'an, Shandong, 271018, China; International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Tai'an, Shandong, 271018, China.
| |
Collapse
|
8
|
Liu X, Liu S, Wang Y, Shi Y, Chen Q. New insights into the antibiofilm activity and mechanism of Mannosylerythritol Lipid-A against Listeria monocytogenes EGD-e. Biofilm 2024; 7:100201. [PMID: 38779407 PMCID: PMC11108854 DOI: 10.1016/j.bioflm.2024.100201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/25/2024] Open
Abstract
Listeria monocytogenes is one of the leading causative agents of foodborne disease outbreaks worldwide. Herein, the antibiofilm effect and mechanism of Mannosylerythritol Lipid-A against L. monocytogenes EGD-e is reported for the first time. MEL-A effectively attenuated biofilm formation while reducing the viability and motility of bacteria within the biofilm in the early stage, and influenced bacterial adhesion by affecting the secretion of extracellular polysaccharides and eDNA. RT-qPCR revealed that MEL-A significantly suppressed the expression of genes involved in flagellar movement and virulence. Untargeted LC-MS metabolomics indicated that MEL-A affected the fluidity and permeability of cell membranes by significantly upregulating unsaturated fatty acids, lipids and glycoside metabolites, and affected protein biosynthesis, nucleotide metabolism and DNA synthesis and repair by significantly downregulating amino acid metabolism and nucleic acid metabolism. These pathways may constitute the key targets of biofilm formation inhibition by MEL-A. Furthermore, MEL-A showed good removal effects on mature biofilms under different temperatures, different materials and milk. Our data indicated that MEL-A could be used as a novel antibiofilm agent to improve food safety. Our study provides new insights into the possible inhibitory mechanism of MEL-A and the response of L. monocytogenes EGD-e to MEL-A.
Collapse
Affiliation(s)
- Xiayu Liu
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| | - Siyu Liu
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| | - Yuxi Wang
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shi
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| | - Qihe Chen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, 314100, China
| |
Collapse
|
9
|
Grigor'eva AE, Tupitsyna AV, Bardasheva AV, Ryabova ES, Ryabchikova EI. Methods for Fixing Biofilms of Staphylococcus aureus and Salmonella enterica for Microscopic Examination. Bull Exp Biol Med 2024; 177:281-286. [PMID: 39096449 DOI: 10.1007/s10517-024-06174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Indexed: 08/05/2024]
Abstract
Different methods for fixing biofilms of Staphylococcus aureus and Salmonella enterica for light and electron microscopy were compared. Paraformaldehyde fixation did not preserve biofilm integrity during dehydration; Ito-Karnovsky fixation revealed cell morphology, but did not preserve the matrix. Ruthenium red combined with aldehydes allowed the matrix to be preserved and visualized. An analysis of the ultrastructure of S. aureus and S. enterica cells in biofilms and suspensions at various fixations is presented. The ultrastructure of the biofilm matrix has been described.
Collapse
Affiliation(s)
- A E Grigor'eva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - A V Tupitsyna
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Bardasheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E S Ryabova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - E I Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
10
|
Rao W, Yue Q, Gao S, Lei M, Lin T, Pan X, Hu J, Fan G. Visible-light-driven water-soluble zinc oxide quantum dots for efficient control of citrus canker. PEST MANAGEMENT SCIENCE 2024; 80:3022-3034. [PMID: 38318944 DOI: 10.1002/ps.8010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND Citrus canker caused by Xanthomonas citri subsp. citri (Xcc) is a devastating bacterial disease that reduces citrus yield and quality, posing a serious threat to the citrus industry. Several conventional chemicals have been used to control citrus canker. However, this approach often leads to the excessive use of chemical agents, can exacerbate environmental pollution and promotes the development of resistant Xcc. Therefore, there is significant interest in the development of efficient and environmentally friendly technologies to control citrus canker. RESULTS In this study, water-soluble ZnO quantum dots (ZnO QDs) were synthesised as an efficient nanopesticide against Xcc. The results showed that the antibacterial activity of ZnO QDs irradiated with visible light [half-maximal effective concentration (EC50) = 33.18 μg mL-1] was ~3.5 times higher than that of the dark-treated group (EC50 = 114.80 μg mL-1). ZnO QDs induced the generation of reactive oxygen species (•OH, •O- 2 and 1O2) under light irradiation, resulting in DNA damage, cytoplasmic destruction, and decreased catalase and superoxide dismutase activities. Transcription analysis showed downregulation of Xcc genes related to 'biofilms, virulence, adhesion' and 'DNA transfer' exposure to ZnO QDs. More importantly, ZnO QDs also promoted the growth of citrus. CONCLUSION This research provides new insights into the photocatalytic antibacterial mechanisms of ZnO QDs and supports the development of more efficient and safer ZnO QDs-based nanopesticides to control citrus canker. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenhua Rao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Qi Yue
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Shang Gao
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Meiling Lei
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Tao Lin
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Xiaohong Pan
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, People's Republic of China
| | - Jinfeng Hu
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| | - Guocheng Fan
- Fujian Engineering Research Center for Green Pest Management, Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
- Fuzhou Scientific Observing and Experimental Station of Crop Pests of Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fujian, China
| |
Collapse
|
11
|
Vilas Boas D, Castro J, Araújo D, Nóbrega FL, Keevil CW, Azevedo NF, Vieira MJ, Almeida C. The Role of Flagellum and Flagellum-Based Motility on Salmonella Enteritidis and Escherichia coli Biofilm Formation. Microorganisms 2024; 12:232. [PMID: 38399635 PMCID: PMC10893291 DOI: 10.3390/microorganisms12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria's fitness when a competing species is present.
Collapse
Affiliation(s)
- Diana Vilas Boas
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Joana Castro
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Daniela Araújo
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
| | - Franklin L. Nóbrega
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Charles W. Keevil
- School of Biological Sciences, University of Southampton, University Road Southampton, Southampton SO17 1BJ, UK; (F.L.N.); (C.W.K.)
| | - Nuno F. Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Vieira
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- LABBELS–Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| | - Carina Almeida
- Center of Biological Engineering (CEB), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (D.V.B.); (M.J.V.)
- INIAV—National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, 4485-655 Vila do Conde, Portugal; (J.C.); (D.A.)
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- AliCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
12
|
Lamichhane B, Mawad AMM, Saleh M, Kelley WG, Harrington PJ, Lovestad CW, Amezcua J, Sarhan MM, El Zowalaty ME, Ramadan H, Morgan M, Helmy YA. Salmonellosis: An Overview of Epidemiology, Pathogenesis, and Innovative Approaches to Mitigate the Antimicrobial Resistant Infections. Antibiotics (Basel) 2024; 13:76. [PMID: 38247636 PMCID: PMC10812683 DOI: 10.3390/antibiotics13010076] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Salmonella is a major foodborne pathogen and a leading cause of gastroenteritis in humans and animals. Salmonella is highly pathogenic and encompasses more than 2600 characterized serovars. The transmission of Salmonella to humans occurs through the farm-to-fork continuum and is commonly linked to the consumption of animal-derived food products. Among these sources, poultry and poultry products are primary contributors, followed by beef, pork, fish, and non-animal-derived food such as fruits and vegetables. While antibiotics constitute the primary treatment for salmonellosis, the emergence of antibiotic resistance and the rise of multidrug-resistant (MDR) Salmonella strains have highlighted the urgency of developing antibiotic alternatives. Effective infection management necessitates a comprehensive understanding of the pathogen's epidemiology and transmission dynamics. Therefore, this comprehensive review focuses on the epidemiology, sources of infection, risk factors, transmission dynamics, and the host range of Salmonella serotypes. This review also investigates the disease characteristics observed in both humans and animals, antibiotic resistance, pathogenesis, and potential strategies for treatment and control of salmonellosis, emphasizing the most recent antibiotic-alternative approaches for infection control.
Collapse
Affiliation(s)
- Bibek Lamichhane
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Asmaa M. M. Mawad
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Saleh
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - William G. Kelley
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Patrick J. Harrington
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Cayenne W. Lovestad
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jessica Amezcua
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Mohamed M. Sarhan
- Faculty of Pharmacy, King Salman International University (KSIU), Ras Sudr 8744304, Egypt
| | - Mohamed E. El Zowalaty
- Veterinary Medicine and Food Security Research Group, Medical Laboratory Sciences Program, Faculty of Health Sciences, Abu Dhabi Women’s Campus, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Hazem Ramadan
- Hygiene and Zoonoses Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Melissa Morgan
- Department of Animal and Food Sciences, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Yosra A. Helmy
- Department of Veterinary Science, Martin-Gatton College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
13
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
14
|
Pradhan J, Pradhan D, Sahu JK, Mishra S, Mallick S, Das S, Negi VD. A novel rspA gene regulates biofilm formation and virulence of Salmonella Typhimurium. Microb Pathog 2023; 185:106432. [PMID: 37926364 DOI: 10.1016/j.micpath.2023.106432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
Salmonella spp. are facultative anaerobic, Gram-negative, rod-shaped bacteria and belongs to the Enterobacteriaceae family. Although much has been known about Salmonella pathogenesis, the functional characterizations of certain genes are yet to be explored. The rspA (STM14_1818) is one such gene with putative dehydratase function, and its role in pathogenesis is unknown. The background information showed that rspA gene is upregulated in Salmonella when it resides inside macrophages, which led us to investigate its role in Salmonella pathogenesis. We generated the rspA knockout strain and complement strain in S. Typhimurium 14028. Ex-vivo and in-vivo infectivity was looked at macrophage and epithelial cell lines and Caenorhabditis elegans (C. elegans). The mutant strain differentially formed the biofilm at different temperatures by altering the expression of genes involved in the synthesis of cellulose and curli. Besides, the mutant strain is hyperproliferative intracellularly and showed increased bacterial burden in C. elegans. The mutant strain became more infectious and lethal, causing faster death of the worms than the wild type, and also modulates the worm's innate immunity. Thus, we found that the rspA deletion mutant was more pathogenic. In this study, we concluded that the rspA gene differentially regulates the biofilm formation in a temperature dependent manner by modulating the genes involved in the synthesis of cellulose and curli and negatively regulates the Salmonella virulence for longer persistence inside the host.
Collapse
Affiliation(s)
- Jasmin Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Diana Pradhan
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Jugal Kishor Sahu
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Satyajit Mishra
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Swarupa Mallick
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Surajit Das
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| | - Vidya Devi Negi
- Laboratory of Infection Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769008, Odisha, India.
| |
Collapse
|
15
|
Yuan L, Fan L, Dai H, He G, Zheng X, Rao S, Yang Z, Jiao XA. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165695. [PMID: 37487904 DOI: 10.1016/j.scitotenv.2023.165695] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Exposure to sub-inhibitory concentrations (sub-MICs) of antibiotics could induce the biofilm formation of microorganisms, but its underlying mechanisms still remain elusive. In the present work, biofilm formation by Salmonella Typhimurium M3 was increased when in the presence of tetracycline at sub-MIC, and the highest induction was observed with tetracycline at 1/8 MIC. The integration of RNA-sequencing and untargeted metabolomics was applied in order to further decipher the potential mechanisms for this observation. In total, 439 genes and 144 metabolites of S. Typhimurium M3 were significantly expressed after its exposure to 1/8 MIC of tetracycline. In addition, the co-expression analysis revealed that 6 genes and 8 metabolites play a key role in response to 1/8 MIC of tetracycline. The differential genes and metabolites were represented in 12 KEGG pathways, including five pathways of amino acid metabolism (beta-alanine metabolism, tryptophan metabolism, arginine and proline metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and glutathione metabolism), three lipid metabolism pathways (biosynthesis of unsaturated fatty acids, fatty acid degradation, and fatty acid biosynthesis), two nucleotide metabolism pathways (purine metabolism, and pyrimidine metabolism), pantothenate and CoA biosynthesis, and ABC transporters. Metabolites (anthranilate, indole, and putrescine) from amino acid metabolism may act as signaling molecules to promote the biofilm formation of S. Typhimurium M3. The results of this work highlight the importance of low antimicrobial concentrations on foodborne pathogens of environmental origin.
Collapse
Affiliation(s)
- Lei Yuan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Luyao Fan
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiangfeng Zheng
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Shengqi Rao
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
16
|
Leesombun A, Sungpradit S, Sariya L, Taowan J, Boonmasawai S. Transcriptional Profiling of the Effect of Coleus amboinicus L. Essential Oil against Salmonella Typhimurium Biofilm Formation. Antibiotics (Basel) 2023; 12:1598. [PMID: 37998800 PMCID: PMC10668763 DOI: 10.3390/antibiotics12111598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Salmonella enterica serovar Typhimurium cause infections primarily through foodborne transmission and remains a significant public health concern. The biofilm formation of this bacteria also contributes to their multidrug-resistant nature. Essential oils from medicinal plants are considered potential alternatives to conventional antibiotics. Therefore, this study assessed the antimicrobial and antibiofilm activities of Coleus amboinicus essential oil (EO-CA) against S. Typhimurium ATCC 14028. Seventeen chemical compounds of EO-CA were identified, and carvacrol (38.26%) was found to be the main constituent. The minimum inhibitory concentration (MIC) of EO-CA for S. Typhimurium planktonic growth was 1024 µg/mL while the minimum bactericidal concentration was 1024 µg/mL. EO-CA at sub-MIC (≥1/16× MIC) exhibited antibiofilm activity against the prebiofilm formation of S. Typhimurium at 24 h. Furthermore, EO-CA (≥1/4× MIC) inhibited postbiofilm formation at 24 and 48 h (p < 0.05). Transcriptional profiling revealed that the EO-CA-treated group at 1/2× MIC had 375 differentially expressed genes (DEGs), 106 of which were upregulated and 269 were downregulated. Five significantly downregulated virulent DEGs responsible for motility (flhD, fljB, and fimD), curli fimbriae (csgD), and invasion (hilA) were screened via quantitative reverse transcription PCR (qRT-PCR). This study suggests the potential of EO-CA as an effective antimicrobial agent for combating planktonic and biofilm formation of Salmonella.
Collapse
Affiliation(s)
- Arpron Leesombun
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Sivapong Sungpradit
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| | - Ladawan Sariya
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Jarupha Taowan
- The Monitoring and Surveillance Center for Zoonotic Diseases in Wildlife and Exotic Animals (MoZWE), Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (L.S.); (J.T.)
| | - Sookruetai Boonmasawai
- Department of Pre-Clinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand; (A.L.); (S.S.)
| |
Collapse
|
17
|
Mateus C, Maia CJ, Domingues F, Bücker R, Oleastro M, Ferreira S. Evaluation of Bile Salts on the Survival and Modulation of Virulence of Aliarcobacter butzleri. Antibiotics (Basel) 2023; 12:1387. [PMID: 37760684 PMCID: PMC10525121 DOI: 10.3390/antibiotics12091387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Aliarcobacter butzleri is a Gram-negative bacterium associated with infections of the gastrointestinal tract and widely distributed in various environments. For successful infection, A. butzleri should be able to tolerate various stresses during gastrointestinal passage, such as bile. Bile represents an antimicrobial host barrier that acts against external noxious agents and consists of a variety of bile salts. The intestinal bile salts act as detergents involved in the antimicrobial host defense; although, on the bacterial side, they could also serve as a signal to activate virulence mechanisms. The aim of this work was to understand the effects of bile salts on the survival and virulence of A. butzleri. In our study, A. butzleri was able to survive in the presence of human physiological concentrations of bile salts. Regarding the virulence features, an increase in cellular hydrophobicity, a decrease in motility and expression of flaA gene, as well as an increase in biofilm formation with a concomitant change in the type of biofilm structure were observed in the presence of sub-inhibitory concentration of bile salts. Concerning adhesion and invasion ability, no significant difference was observed. Overall, the results demonstrated that A. butzleri is able to survive in physiological concentrations of bile salts and that exposure to bile salts could change its virulence mechanisms.
Collapse
Affiliation(s)
- Cristiana Mateus
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Cláudio J. Maia
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Fernanda Domingues
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| | - Roland Bücker
- Clinical Physiology/Nutritional Medicine, Medical Department of Gastroenterology, Infectiology, Rheumatology, Charité—Universitätsmedizin Berlin, 12203 Berlin, Germany;
| | - Mónica Oleastro
- National Reference Laboratory for Gastrointestinal Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisbon, Portugal;
| | - Susana Ferreira
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal; (C.M.); (C.J.M.); (F.D.)
| |
Collapse
|
18
|
Chandra K, Nair AV, Chatterjee R, Muralidhara P, Singh A, Kamanna S, Tatu US, Chakravortty D. Absence of proline-peptide transporter YjiY in Salmonella Typhimurium leads to secretion of factors which inhibits intra-species biofilm formation. Microbiol Res 2023; 273:127411. [PMID: 37285689 DOI: 10.1016/j.micres.2023.127411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/09/2023]
Abstract
Salmonella is a genus of widely spread Gram negative, facultative anaerobic bacteria, which is known to cause ¼th of diarrheal morbidity and mortality globally. It causes typhoid fever and gastroenteritis by gaining access to the host gut through contaminated food and water. Salmonella utilizes its biofilm lifestyle to strongly resist antibiotics and persist in the host. Although biofilm removal or dispersal has been studied widely, the inhibition of the initiation of Salmonella Typhimurium (STM WT) biofilm remains elusive. This study demonstrates the anti-biofilm property of the cell-free supernatant obtained from a carbon-starvation induced proline peptide transporter mutant (STM ΔyjiY) strain. The STM ΔyjiY culture supernatant primarily inhibits biofilm initiation by regulating biofilm-associated transcriptional network that is reversed upon complementation (STM ΔyjiY:yjiY). We demonstrate that abundance of FlgM correlates with the absence of flagella in the STM ΔyjiY supernatant treated WT cells. NusG works synergistically with the global transcriptional regulator H-NS. Relatively low abundances of flavoredoxin, glutaredoxin, and thiol peroxidase might lead to accumulation of ROS within the biofilm, and subsequent toxicity in STM ΔyjiY supernatant. This work further suggests that targeting these oxidative stress relieving proteins might be a good choice to reduce Salmonella biofilm.
Collapse
Affiliation(s)
- Kasturi Chandra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Abhilash Vijay Nair
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Ritika Chatterjee
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prerana Muralidhara
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Anmol Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sathisha Kamanna
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Utpal S Tatu
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India; Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram, India.
| |
Collapse
|
19
|
Kilic T, Bali EB. Biofilm control strategies in the light of biofilm-forming microorganisms. World J Microbiol Biotechnol 2023; 39:131. [PMID: 36959476 DOI: 10.1007/s11274-023-03584-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
Biofilm is a complex consortium of microorganisms attached to biotic or abiotic surfaces and live in self-produced or acquired extracellular polymeric substances (EPSs). EPSs are mainly formed by lipids, polysaccharides, proteins, and extracellular DNAs. The adherence to the surface of microbial communities is seen in food, medical, dental, industrial, and environmental fields. Biofilm development in food processing areas challenges food hygiene, and human health. In addition, bacterial attachment and biofilm formation on medical implants inside human tissue can cause multiple critical chronic infections. More than 30 years of international research on the mechanisms of biofilm formation have been underway to address concerns about bacterial biofilm infections. Antibiofilm strategies contain cold atmospheric plasma, nanotechnological, phage-based, antimicrobial peptides, and quorum sensing inhibition. In the last years, the studies on environmentally-friendly techniques such as essential oils and bacteriophages have been intensified to reduce microbial growth. However, the mechanisms of the biofilm matrix formation are still unclear. This review aims to discuss the latest antibiofilm therapeutic strategies against biofilm-forming bacteria.
Collapse
Affiliation(s)
- Tugba Kilic
- Department of Medical Services and Techniques, Program of Medical Laboratory Techniques, Vocational School of Health Services, Gazi University, Ankara, 06830, Turkey.
| | - Elif Burcu Bali
- Department of Medical Services and Techniques, Program of Medical Laboratory Techniques, Vocational School of Health Services, Gazi University, Ankara, 06830, Turkey
| |
Collapse
|
20
|
Flagellar motility mediates biofilm formation in Aeromonas dhakensis. Microb Pathog 2023; 177:106059. [PMID: 36878334 DOI: 10.1016/j.micpath.2023.106059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/27/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023]
Abstract
Aeromonas dhakensis possesses dual flagellar systems for motility under different environments. Flagella-mediated motility is necessary for biofilm formation through an initial attachment of bacteria to the surface, but this has not been elucidated in A. dhakensis. This study investigates the role of polar (flaH, maf1) and lateral (lafB, lafK and lafS) flagellar genes in the biofilm formation of a clinical A. dhakensis strain WT187 isolated from burn wound infection. Five deletion mutants and corresponding complemented strains were constructed using pDM4 and pBAD33 vectors, respectively, and analyzed for motility and biofilm formation using crystal violet staining and real-time impedance-based assays. All mutants were significantly reduced in swimming (p < 0.0001), swarming (p < 0.0001) and biofilm formation using crystal violet assay (p < 0.05). Real-time impedance-based analysis revealed WT187 biofilm was formed between 6 to 21 h, consisting of early (6-10 h), middle (11-18 h), and late (19-21 h) stages. The highest cell index of 0.0746 was recorded at 22-23 h and biofilms began to disperse starting from 24 h. Mutants Δmaf1, ΔlafB, ΔlafK and ΔlafS exhibited reduced cell index values at 6-48 h when compared to WT187 which indicates less biofilm formation. Two complemented strains cmaf1 and clafB exhibited full restoration to wild-type level in swimming, swarming, and biofilm formation using crystal violet assay, hence suggesting that both maf1 and lafB genes are involved in biofilm formation through flagella-mediated motility and surface attachment. Our study shows the role of flagella in A. dhakensis biofilm formation warrants further investigations.
Collapse
|
21
|
He X, Ding H, Gao Z, Zhang X, Wu R, Li K. Variations in the motility and biofilm formation abilities of Escherichia coli O157:H7 during noodle processing. Food Res Int 2023; 168:112670. [PMID: 37120241 DOI: 10.1016/j.foodres.2023.112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Motility and biofilm formation help to protect bacteria from host immune responses and facilitate tolerance of environmental stimuli to improve their adaptability. However, few reports have investigated the adaptability of bacteria that live in food substrates undergoing food processing-induced stress. In this study, variations in the surface morphology, bacterial count, motility, and biofilm formation abilities of Escherichia coli O157:H7 NCTC12900 were investigated during noodle processing, including the kneading, squeezing, resting, and sheeting phases. The results showed that bacterial surface morphology, count, and motility were impaired in the squeezing phase, whereas biofilm biomass continuously increased across all processing phases. Twenty-one genes and sRNAs were measured using RT-qPCR to reveal the mechanisms underlying these changes. Of these, the genes adrA, csrA, flgM, flhD, fliM, ydaM, and the sRNA McaS were significantly upregulated, whereas the genes fliA, fliG, and the sRNAs CsrC, DsrA, GcvB, and OxyS were evidently repressed. According to the correlation matrix results based on the reference gene adrA, we found that csrA, GcvB, McaS, and OxyS were the most relevant genes and sRNAs for biofilm formation and motility. For each of them, their overexpressions was found to inhibit bacterial motility and biofilm formation to varying degrees during noodle processing. Among these, 12900/pcsrA had the highest inhibitory potential against motility, yielding a minimum of 11.2 mm motility diameter in the resting phase. Furthermore, 12900/pOxyS showed the most significant inhibitory effect against biofilm formation, yielding a minimum biofilm formation value of 5% of that exhibited the wild strain in the sheeting phase. Therefore, we prospect to find an effective and feasible novel approach to weaken bacterial survival during food processing by regulating the genes or sRNAs related to motility and biofilm formation.
Collapse
|
22
|
Has EG, Akçelik N, Akçelik M. Comparative global gene expression analysis of biofilm forms of Salmonella Typhimurium ATCC 14028 and its seqA mutant. Gene X 2023; 853:147094. [PMID: 36470486 DOI: 10.1016/j.gene.2022.147094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, comparative transcriptomic analyzes (mRNA and miRNA) were performed on the biofilm forms of S. Typhimurium ATCC 14028 wild-type strain and its seqA gene mutant in order to determine the regulation characteristics of the seqA gene in detail. The results of global gene expression analyses showed an increase in the expression level of 54 genes and a decrease in the expression level of 155 genes (p < 0.05) in the seqA mutant compared to the wild-type strain. 10 of the 48 miRNAs identified on behalf of sequence analysis are new miRNA records for Salmonella. Transcripts of 14 miRNAs differed between wild-type strain and seqA mutant (p < 0.05), of which eight were up-regulated and six were down-regulated. Bioinformatic analyzes showed that differentially expressed genes in the wild-type strain and its seqA gene mutant play a role in different metabolic processes as well as biofilm formation, pathogenicity and virulence. When the transcriptomic data were interpreted together with the findings obtained from phenotypic tests such as motility, attachment to host cells and biofilm morphotyping, it was determined that the seqA gene has a critical function especially for the adhesion and colonization stages of biofilm formation, as well as for biofilm stability. Transcriptomic data pointing out that the seqA gene is also a general positive regulator of T3SS effector proteins active in cell invasion in S. Typhimurium wild-type biofilm, proves that this gene is involved in Salmonella host cell invasion.
Collapse
Affiliation(s)
- Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135 Ankara, Turkey
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100 Ankara, Turkey.
| |
Collapse
|
23
|
Farha AK, Sui Z, Corke H. Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Salmonella enterica Typhimurium-An Assessment of the Mechanisms of Action. Antibiotics (Basel) 2023; 12:antibiotics12020239. [PMID: 36830150 PMCID: PMC9952675 DOI: 10.3390/antibiotics12020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica is an important foodborne pathogen that causes gastroenteritis and systemic infection in humans and livestock. Salmonella biofilms consist of two major components-amyloid curli and cellulose-which contribute to the prolonged persistence of Salmonella inside the host. Effective agents for inhibiting the formation of biofilms are urgently needed. We investigated the antibiofilm effect of Raspberry Ketone (RK) and its mechanism of action against Salmonella Typhimurium 14028 using the Congo red agar method, Calcofluor staining, crystal violet method, pellicle assay, and the TMT-labeled quantitative proteomic approach. RK suppressed the formation of different types of Salmonella biofilms, including pellicle formation, even at low concentrations (200 µg/mL). Furthermore, at higher concentrations (2 mg/mL), RK exhibited bacteriostatic effects. RK repressed cellulose deposition in Salmonella biofilm through an unknown mechanism. Swimming and swarming motility analyses demonstrated reduced motility in RK-treated S. typhimurium. Proteomics analysis revealed that pathways involved in amyloid curli production, bacterial invasion, flagellar motility, arginine biosynthesis, and carbohydrate metabolism, were targeted by RK to facilitate biofilm inhibition. Consistent with the proteomics data, the expressions of csgB and csgD genes were strongly down-regulated in RK-treated S. typhimurium. These findings clearly demonstrated the Salmonella biofilm inhibition capability of RK, justifying its further study for its efficacy assessment in clinical and industrial settings.
Collapse
Affiliation(s)
- Arakkaveettil Kabeer Farha
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: (Z.S.); (H.C.)
| | - Harold Corke
- Department of Biotechnology and Food Engineering, Guangdong Technion—Israel Institute of Technology, 241 Daxue Road, Shantou 515063, China
- Faculty of Biotechnology and Food Engineering, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: (Z.S.); (H.C.)
| |
Collapse
|
24
|
Keçeli Oğuz S, Has EG, Akçelik N, Akçelik M. Phenotypic impacts and genetic regulation characteristics of the DNA adenine methylase gene (dam) in Salmonella Typhimurium biofilm forms. Res Microbiol 2023; 174:103991. [PMID: 36113833 DOI: 10.1016/j.resmic.2022.103991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/22/2022] [Accepted: 09/07/2022] [Indexed: 01/11/2023]
Abstract
In this study, transcriptional level gene expression changes in biofilm forms of Salmonella Typhimurium ATCC 14028 and its dam mutant were investigated by performing RNAseq analysis. As a result of these analyzes, a total of 233 differentially expressed genes (DEGs) were identified in the dam mutant, of which 145 genes were downregulated and 88 genes were upregulated compared to the wild type. According to data from miRNA sequence analysis, of 13 miRNAs differentially expressed in dam mutant, 9 miRNAs were downregulated and 4 miRNAs were upregulated. These data provide the first evidence that the dam gene is a global regulator of biofilm formation in Salmonella. In addition, phenotypic analyses revealed that bacterial swimming and swarming motility and cellulose production were highly inhibited in the dam mutant. It was determined that bacterial adhesion in Caco-2 and HEp-2 cell lines was significantly reduced in dam mutant. At the end of 90 min, the adhesion rate of wild type strain was 43.3% in Caco-2 cell line, while this rate was 14.9% in dam mutant. In the HEp-2 cell line, while 45.5% adherence was observed in the wild-type strain, this rate decreased to 15.3% in the dam mutant.
Collapse
Affiliation(s)
- Selma Keçeli Oğuz
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| | - Elif Gamze Has
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| | - Nefise Akçelik
- Biotechnology Institute, Ankara University, Keçiören, 06135, Ankara, Turkey.
| | - Mustafa Akçelik
- Department of Biology, Ankara University, Yenimahalle, 06100, Ankara, Turkey.
| |
Collapse
|
25
|
Dong Y, Xu M, Wan X, Zhao D, Geng J, Huang H, Jiang M, Lu C, Liu Y. TonB systems are required for Aeromonas hydrophila motility by controlling the secretion of flagellin. Microbes Infect 2023; 25:105038. [PMID: 35963567 DOI: 10.1016/j.micinf.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
The TonB system is required for the active transport of iron compounds across the outer membrane in Gram-negative bacteria. Our previous data indicated that three TonB systems act coordinately to contribute to the motility of Aeromonas hydrophila NJ-35. In this study, we found that flagellum biogenesis was defective in the ΔtonB123 mutant. Subcellular localization indicated that the flagellin subunits FlaA and FlaB were trapped in the cytoplasm of ΔtonB123 mutant with reduced molecular mass. Overexpression of FlaA or FlaB in the ΔtonB123 mutant was unable to restore the secretion of flagellin subunits. Further investigation demonstrated that flagellins in the ΔtonB123 mutant showed a weak affinity for the flagellin-specific chaperone FliS, which is necessary for the export of flagellins. Deglycosylation analysis indicated that flagellins in the cytoplasm of the ΔtonB123 mutant were almost nonglycosylated. Our data suggested that disruption of tonB123 impairs the formation of flagella by inhibiting flagellin glycosylation and decreasing the binding affinity of flagellin for the chaperone FliS. Taken together, our findings indicate a new role of the TonB system in flagellar biogenesis in A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Meng Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xihe Wan
- Institute of Oceanology and Marine Fisheries, Nantong, 226007, Jiangsu, China
| | - Dan Zhao
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jinzhu Geng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Hao Huang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi University for Nationalities, Nanning, 530008, Guangxi, China
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
26
|
Phenyllactic acid application to control Listeria monocytogenes biofilms and its growth in milk and spiced beef. Int J Food Microbiol 2022; 381:109910. [DOI: 10.1016/j.ijfoodmicro.2022.109910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/05/2022] [Accepted: 08/27/2022] [Indexed: 11/21/2022]
|
27
|
Elpers L, Deiwick J, Hensel M. Effect of Environmental Temperatures on Proteome Composition of Salmonella enterica Serovar Typhimurium. Mol Cell Proteomics 2022; 21:100265. [PMID: 35788066 PMCID: PMC9396072 DOI: 10.1016/j.mcpro.2022.100265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 06/17/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is a major cause of gastroenteritis and transmitted by consumption of contaminated food. STM is associated to food originating from animals (pork, chicken, eggs) or plants (vegetables, fruits, nuts, and herbs). Infection of warm-blooded mammalian hosts by STM and the underlying complex regulatory network of virulence gene expression depend on various environmental conditions encountered in hosts. However, less is known about the proteome and possible regulatory networks for gene expression of STM outside the preferred host. Nutritional limitations and changes in temperature are the most obvious stresses outside the native host. Thus, we analyzed the proteome profile of STM grown in rich medium (LB medium) or minimal medium (PCN medium) at temperatures ranging from 8 °C to 37 °C. LB medium mimics the nutritional rich environment inside the host, whereas minimal PCN medium represents nutritional limitations outside the host, found during growth of fresh produce (field conditions). Further, the range of temperatures analyzed reflects conditions within natural hosts (37 °C), room temperature (20 °C), during growth under agricultural conditions (16 °C and 12 °C), and during food storage (8 °C). Implications of altered nutrient availability and growth temperature on STM proteomes were analyzed by HPLC/MS-MS and label-free quantification. Our study provides first insights into the complex adaptation of STM to various environmental temperatures, which allows STM not only to infect mammalian hosts but also to enter new infection routes that have been poorly studied so far. With the present dataset, global virulence factors, their impact on infection routes, and potential anti-infective strategies can now be investigated in detail. Especially, we were able to demonstrate functional flagella at 12 °C growth temperature for STM with an altered motility behavior.
Collapse
Affiliation(s)
- Laura Elpers
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Jörg Deiwick
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany; CellNanOs - Center of Cellular Nanoanalytics Osnabrück, School of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
28
|
The CRISPR-Cas System Differentially Regulates Surface-Attached and Pellicle Biofilm in Salmonella enterica Serovar Typhimurium. Microbiol Spectr 2022; 10:e0020222. [PMID: 35678575 PMCID: PMC9241790 DOI: 10.1128/spectrum.00202-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The CRISPR-Cas mediated regulation of biofilm by Salmonella enterica serovar Typhimurium was investigated by deleting CRISPR-Cas components ΔcrisprI, ΔcrisprII, ΔΔcrisprI crisprII, and Δcas op. We determined that the system positively regulates surface biofilm while inhibiting pellicle biofilm formation. Results of real-time PCR suggest that the flagellar (fliC, flgK) and curli (csgA) genes were repressed in knockout strains, causing reduced surface biofilm. The mutants displayed altered pellicle biofilm architecture. They exhibited bacterial multilayers and a denser extracellular matrix with enhanced cellulose and less curli, ergo weaker pellicles than those of the wild type. The cellulose secretion was more in the knockout strains due to the upregulation of bcsC, which is necessary for cellulose export. We hypothesized that the secreted cellulose quickly integrates into the pellicle, leading to enhanced pellicular cellulose in the knockout strains. We determined that crp is upregulated in the knockout strains, thereby inhibiting the expression of csgD and, hence, also of csgA and bcsA. The conflicting upregulation of bcsC, the last gene of the bcsABZC operon, could be caused by independent regulation by the CRISPR-Cas system owing to a partial match between the CRISPR spacers and bcsC gene. The cAMP-regulated protein (CRP)-mediated regulation of the flagellar genes in the knockout strains was probably circumvented through the regulation of yddx governing the availability of the sigma factor σ28 that further regulates class 3 flagellar genes (fliC, fljB, and flgK). Additionally, the variations in the lipopolysaccharide (LPS) profile and expression of LPS-related genes (rfaC, rfbG, and rfbI) in knockout strains could also contribute to the altered pellicle architecture. Collectively, we establish that the CRISPR-Cas system differentially regulates the formation of surface-attached and pellicle biofilm. IMPORTANCE In addition to being implicated in bacterial immunity and genome editing, the CRISPR-Cas system has recently been demonstrated to regulate endogenous gene expression and biofilm formation. While the function of individual cas genes in controlling Salmonella biofilm has been explored, the regulatory role of CRISPR arrays in biofilm is less studied. Moreover, studies have focused on the effects of the CRISPR-Cas system on surface-associated biofilms, and comprehensive studies on the impact of the system on pellicle biofilm remain an unexplored niche. We demonstrate that the CRISPR array and cas genes modulate the expression of various biofilm genes in Salmonella, whereby surface and pellicle biofilm formation is distinctively regulated.
Collapse
|
29
|
Fan Q, Zuo J, Wang H, Grenier D, Yi L, Wang Y. Contribution of quorum sensing to virulence and antibiotic resistance in zoonotic bacteria. Biotechnol Adv 2022; 59:107965. [PMID: 35487393 DOI: 10.1016/j.biotechadv.2022.107965] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/02/2022]
Abstract
Quorum sensing (QS), which is a key part of cell/cell communication, is widely distributed in microorganisms, especially in bacteria. Bacteria can produce and detect the presence of QS signal molecule, perceive the composition and density of microorganisms in their complex habitat, and then dynamically regulate their own gene expression to adapt to their environment. Among the many traits controlled by QS in pathogenic bacteria is the expression of virulence factors and antibiotic resistance. Many pathogenic bacteria rely on QS to govern the production of virulence factors and express drug-resistance, especially in zoonotic bacteria. The threat of antibiotic resistant zoonotic bacteria has called for alternative antimicrobial strategies that would mitigate the increase of classical resistance mechanism. Targeting QS has proven to be a promising alternative to conventional antibiotic for controlling infections. Here we review the QS systems in common zoonotic pathogenic bacteria and outline how QS may control the virulence and antibiotic resistance of zoonotic bacteria.
Collapse
Affiliation(s)
- Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Jing Zuo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China
| | - Daniel Grenier
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Quebec City, Canada
| | - Li Yi
- Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China; College of Life Science, Luoyang Normal University, Luoyang, China.
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China; Key Laboratory of Molecular Pathogen and Immunology of Animal of Luoyang, Luoyang, China.
| |
Collapse
|
30
|
Avelino-Flores F, Soria-Bustos J, Saldaña-Ahuactzi Z, Martínez-Laguna Y, Yañez-Santos JA, Cedillo-Ramírez ML, Girón JA. The Transcription of Flagella of Enteropathogenic Escherichia coli O127:H6 Is Activated in Response to Environmental and Nutritional Signals. Microorganisms 2022; 10:microorganisms10040792. [PMID: 35456842 PMCID: PMC9032864 DOI: 10.3390/microorganisms10040792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 02/01/2023] Open
Abstract
The flagella of enteropathogenic Escherichia coli (EPEC) O127:H6 E2348/69 mediate adherence to host proteins and epithelial cells. What environmental and nutritional signals trigger or down-regulate flagella expression in EPEC are largely unknown. In this study, we analyzed the influence of pH, oxygen tension, cationic and anionic salts (including bile salt), carbon and nitrogen sources, and catecholamines on the expression of the flagellin gene (fliC) of E2348/69. We found that sodium bicarbonate, which has been shown to induce the expression of type III secretion effectors, down-regulated flagella expression, explaining why E2348/69 shows reduced motility and flagellation when growing in Dulbecco’s Minimal Essential Medium (DMEM). Further, growth under a 5% carbon dioxide atmosphere, in DMEM adjusted to pH 8.2, in M9 minimal medium supplemented with 80 mM glucose or sucrose, and in DMEM containing 150 mM sodium chloride, 0.1% sodium deoxycholate, or 30 µM epinephrine significantly enhanced fliC transcription to different levels in comparison to growth in DMEM alone. When EPEC was grown in the presence of HeLa cells or in supernatants of cultured HeLa cells, high levels (4-fold increase) of fliC transcription were detected in comparison to growth in DMEM alone. Our data suggest that nutritional and host signals that EPEC may encounter in the intestinal niche activate fliC expression in order to favor motility and host colonization.
Collapse
Affiliation(s)
- Fabiola Avelino-Flores
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge Soria-Bustos
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Pachuca 42160, Mexico;
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA;
| | - Ygnacio Martínez-Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico; (F.A.-F.); (Y.M.-L.)
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico;
- Correspondence:
| |
Collapse
|
31
|
Ma Y, Zhang Y, Shan Z, Wang X, Xia X. Involvement of PhoP/PhoQ two-component system in biofilm formation in Cronobacter sakazakii. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Dong T, Wang W, Xia M, Liang S, Hu G, Ye H, Cao Q, Dong Z, Zhang C, Feng D, Zuo J. Involvement of the Heat Shock Protein HtpG of Salmonella Typhimurium in Infection and Proliferation in Hosts. Front Cell Infect Microbiol 2021; 11:758898. [PMID: 34869065 PMCID: PMC8635147 DOI: 10.3389/fcimb.2021.758898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/25/2021] [Indexed: 12/04/2022] Open
Abstract
Salmonella Typhimurium is a common pathogen infecting the gastrointestinal tract of humans and animals, causing host gastroenteritis and typhoid fever. Heat shock protein (HtpG) as a molecular chaperone is involved in the various cellular processes of bacteria, especially under environmental stress. However, the potential association of HtpG with S. Typhimurium infection remains unknown. In this study, we clarified that HtpG could also play a role as an effector in S. Typhimurium infection. RNA-seq indicated that the flagellar assembly pathway, infection pathway, and chemotaxis pathway genes of S. Typhimurium were downregulated after the mutation of HtpG, which resulted in compromises of S. Typhimurium motility, biofilm formation, adhesion, invasion, and inflammation-inducing ability. In addition, HtpG recombinant protein was capable of promoting the proliferation of S. Typhimurium in host cells and the resultant inflammation. Collectively, our results illustrated an important role of HtpG in S. Typhimurium infection.
Collapse
Affiliation(s)
- Tao Dong
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Weiwei Wang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Minhao Xia
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Shujie Liang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Guangzhong Hu
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Hui Ye
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Qingyun Cao
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Zemin Dong
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Changming Zhang
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Dingyuan Feng
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| | - Jianjun Zuo
- College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Animal Nutritional Control, Guangzhou, China
| |
Collapse
|
33
|
Holden ER, Yasir M, Turner AK, Wain J, Charles IG, Webber MA. Massively parallel transposon mutagenesis identifies temporally essential genes for biofilm formation in Escherichia coli. Microb Genom 2021; 7. [PMID: 34783647 PMCID: PMC8743551 DOI: 10.1099/mgen.0.000673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Biofilms complete a life cycle where cells aggregate, grow and produce a structured community before dispersing to colonize new environments. Progression through this life cycle requires temporally controlled gene expression to maximize fitness at each stage. Previous studies have largely focused on identifying genes essential for the formation of a mature biofilm; here, we present an insight into the genes involved at different stages of biofilm formation. We used TraDIS-Xpress, a massively parallel transposon mutagenesis approach using transposon-located promoters to assay the impact of disruption or altered expression of all genes in the genome on biofilm formation. We identified 48 genes that affected the fitness of cells growing in a biofilm, including genes with known roles and those not previously implicated in biofilm formation. Regulation of type 1 fimbriae and motility were important at all time points, adhesion and motility were important for the early biofilm, whereas matrix production and purine biosynthesis were only important as the biofilm matured. We found strong temporal contributions to biofilm fitness for some genes, including some where expression changed between being beneficial or detrimental depending on the stage at which they are expressed, including dksA and dsbA. Novel genes implicated in biofilm formation included zapE and truA involved in cell division, maoP in chromosome organization, and yigZ and ykgJ of unknown function. This work provides new insights into the requirements for successful biofilm formation through the biofilm life cycle and demonstrates the importance of understanding expression and fitness through time.
Collapse
Affiliation(s)
- Emma R Holden
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - Muhammad Yasir
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - A Keith Turner
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK
| | - John Wain
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk NR4 7UQ, UK.,Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
34
|
Wang F, Tan J, Zhang S, Zhou Y, He D, Deng L. Efficient Eradication of Bacterial Biofilms with Highly Specific Graphene-Based Nanocomposite Sheets. ACS Biomater Sci Eng 2021; 7:5118-5128. [PMID: 34664941 DOI: 10.1021/acsbiomaterials.1c00575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms are usually resistant to antibiotics, thus powerful methods are required for removal. Nanomaterial involving a combination of treatment modalities recently has been recognized as an effective alternative to combat biofilm. However, its targeted and controlled release in bacterial infection is still a major challenge. Here, we present an intelligent phototherapeutic nanoplatform consisting of an aptamer (Apt), indocyanine green (ICG), and carboxyl-functionalized graphene oxide (GO-COOH), namely, ICG@GO-Apt, for targeted treatment of the biofilm formed by Salmonella Typhimurium. Since Apt-conjugated nanosheets (NSs) can specifically accumulate near abscess caused by the pathogens, they enhance greatly the local drug molecule concentration and promote their precise delivery. They can simultaneously generate heat and reactive oxygen species under near-infrared irradiation for photothermal/photodynamic therapy, thereby significantly enhancing biofilm elimination. The phototherapeutic ICG@GO-Apt also displays a good biocompatibility. More importantly, the multifunction phototherapeutic platform shows an efficient biofilm elimination with an efficiency of greater than 99.99% in an abscess formation model. Therefore, ICG@GO-Apt NSs with bacteria-targeting capability provide a reliable tool for clinical bacterial infection that circumvents antibiotic resistance.
Collapse
Affiliation(s)
- Feiying Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha 410208, Hunan, People's Republic of China
| | - Jianxi Tan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China.,Changsha Customs Technology Center, Xiangfu middle Road 188, Changsha, Hunan 410004, People's Republic of China
| | - Shengnan Zhang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Yan Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Dinggeng He
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, People's Republic of China
| |
Collapse
|