1
|
Wang Z, Li N, Xu Y, Wang W, Liu Y. Functional activity of endophytic bacteria G9H01 with high salt tolerance and anti-Magnaporthe oryzae that isolated from saline-alkali-tolerant rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171822. [PMID: 38521266 DOI: 10.1016/j.scitotenv.2024.171822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
It holds significant practical importance to screen and investigate endophytic bacteria with salt-tolerant activity in rice for the development of relevant microbial agents. A total of 179 strains of endophytic bacteria were isolated from 24 samples of salt-tolerant rice seeds, with almost 95 % of these bacteria exhibiting tolerance to a salt content of 2 % (0.34 mol/L). Following the screening process, a bacterium named G9H01 was identified, which demonstrated a salt tolerance of up to 15 % (2.57 mol/L) and resistance to Magnaporthe oryzae, the causal agent of rice blast disease. Phylogenetic analysis confirmed G9H01 as a strain of Bacillus paralicheniformis. The complete genome of G9H01 was sequenced and assembled, revealing a considerable number of genes encoding proteins associated with salt tolerance. Further analysis indicated that G9H01 may alleviate salt stress in a high-salt environment through various mechanisms. These mechanisms include the utilization of proteins such as K+ transporters, antiporters, and Na+/H+ antiporters, which are involved in K+ absorption and Na+ excretion. G9H01 also demonstrated the ability to uptake and accumulate betaine, as well as secrete extracellular polysaccharides. Collectively, these findings suggest that Bacillus paralicheniformis G9H01 has potential as a biocontrol agent, capable of promoting rice growth under saline-alkali-tolerant conditions.
Collapse
Affiliation(s)
- Zhishan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ni Li
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha 410125, China
| | - Youqiang Xu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Weiping Wang
- State Key Laboratory of Hybrid Rice (Hunan Hybrid Rice Research Center), Changsha 410125, China.
| | - Yang Liu
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
2
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
3
|
Wang X, Wu H, Wang L, Wang Y, Wang X, Wang H, Lu Z. Global transcriptional and translational regulation of Sphingomonas melonis TY in response to hyperosmotic stress. ENVIRONMENTAL RESEARCH 2023; 219:115014. [PMID: 36549482 DOI: 10.1016/j.envres.2022.115014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/10/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Hyperosmotic stress is one of the most ubiquitous stress factors in microbial habitats and impairs the efficiency of bacteria performing vital biochemical tasks. Sphingomonas serves as a 'superstar' of plant defense and pollutant degradation, and is widely existed in the environment. However, it is still unclear that how Sphingomonas sp. survives under hyperosmotic stress conditions. In this study, multiomics profiling analysis was conducted with S. melonis TY under hyperosmotic conditions to investigate the intracellular hyperosmotic responses. The transcriptome and proteome revealed that sensing systems, including most membrane protein coding genes were upregulated, genes related to two-component systems were tiered adjusted to reset the whole system, other stress response regulators such as sigma-70 were also significantly tiered upregulated. In addition, transport systems together with compatible solute biosynthesis related genes were significantly upregulated to accumulate intracellular nutrients and compatible solutes. When treated with hyperosmotic stress, redox-stress response systems were triggered and mechanosensitive channels together with ion transporters were induced to maintain cellular ion homeostasis. In addition, cellular concentration of c-di-guanosine monophosphate synthetase (c-di-GMP) was reduced, followed by negative influences on genes involved in flagellar assembly and chemotaxis pathways, leading to severe damage to the athletic ability of S. melonis TY, and causing detachments of biofilms. Briefly, this research revealed a comprehensive response mechanism of S. melonis TY exposure to hyperosmotic stress, and emphasized that flagellar assembly and biofilm formation were vulnerable to hyperosmotic conditions. Importance. Sphingomonas, a genus with versatile functions survives extensively, lauded for its prominent role in plant protection and environmental remediation. Current evidence shows that hyperosmotic stress as a ubiquitous environmental factor, usually threatens the survival of microbes and thus impairs the efficiency of their environmental functions. Thus, it is essential to explore the cellular responses to hyperosmotic stress. Hence, this research will greatly enhance our understanding of the global transcriptional and translational regulation of S. melonis TY in response to hyperosmotic stress, leading to broader perspectives on the impacts of stressful environments.
Collapse
Affiliation(s)
- Xiaoyu Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Lvjing Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yihan Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xuejun Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China; Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Ye Z, Huang L, Zhao Q, Zhang W, Zhang L. Key genes for arsenobetaine synthesis in marine medaka (Oryzias melastigma) by transcriptomics. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 253:106349. [PMID: 36395554 DOI: 10.1016/j.aquatox.2022.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Marine fish undergo detoxification to overcome As stress, forming non-toxic metabolites arsenobetaine (AsB). Genes associated with AsB synthesis remain unknown. Therefore, in this study, we explored the key genes involved in the synthesis of AsB by transcriptomic analysis in marine medaka (Oryzias melastigma), and then screened candidate genes related to AsB synthesis. In the liver, 40 genes were up-regulated and 23 genes were down-regulated, whereas in muscle, 83 genes were up-regulated and 331 genes were down-regulated. We revealed that bhmt, mat2aa, and gstt1a can play a significant role in the glutathione and methionine metabolic pathway. These three genes can affect the conversion of arsenocholine (AsC) to AsB by the vitro gene transformation experiments of E. coli BL21(DE3). E. coli BL21-bhmt overexpressing bhmt resulted in more oxidation of precursor AsC to AsB. Furthermore, the AsB concentration was decreased after E. coli BL21 overexpressing mat2aa and gstt1a, which were down-regulated in marine medaka. Therefore, we concluded that bhmt, mat2aa, and gstt1a are involved in AsB synthesis. Overall, this is the first report on transcriptome screening and identification of key genes for AsB synthesis in marine medaka. We provided important insights to reveal the mystery of AsB synthesis in marine fish.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Li Zhang
- Key laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
5
|
Guo J, Deng X, Zhang Y, Song S, Zhao T, Zhu D, Cao S, Baryshnikov PI, Cao G, Blair HT, Chen C, Gu X, Liu L, Zhang H. The Flagellar Transcriptional Regulator FtcR Controls Brucella melitensis 16M Biofilm Formation via a betI-Mediated Pathway in Response to Hyperosmotic Stress. Int J Mol Sci 2022; 23:ijms23179905. [PMID: 36077302 PMCID: PMC9456535 DOI: 10.3390/ijms23179905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
The expression of flagellar proteins in Brucella species likely evolved through genetic transference from other microorganisms, and contributed to virulence, adaptability, and biofilm formation. Despite significant progress in defining the molecular mechanisms behind flagellar gene expression, the genetic program controlling biofilm formation remains unclear. The flagellar transcriptional factor (FtcR) is a master regulator of the flagellar system’s expression, and is critical for B. melitensis 16M’s flagellar biogenesis and virulence. Here, we demonstrate that FtcR mediates biofilm formation under hyperosmotic stress. Chromatin immunoprecipitation with next-generation sequencing for FtcR and RNA sequencing of ftcR-mutant and wild-type strains revealed a core set of FtcR target genes. We identified a novel FtcR-binding site in the promoter region of the osmotic-stress-response regulator gene betI, which is important for the survival of B. melitensis 16M under hyperosmotic stress. Strikingly, this site autoregulates its expression to benefit biofilm bacteria’s survival under hyperosmotic stress. Moreover, biofilm reduction in ftcR mutants is independent of the flagellar target gene fliF. Collectively, our study provides new insights into the extent and functionality of flagellar-related transcriptional networks in biofilm formation, and presents phenotypic and evolutionary adaptations that alter the regulation of B. melitensis 16M to confer increased tolerance to hyperosmotic stress.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Peter Ivanovic Baryshnikov
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- College of Veterinary, Altai State Agricultural University, 656000 Barnaul, Russia
| | - Gang Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430000, China
| | - Hugh T. Blair
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- International Sheep Research Center, School of Agriculture and Environment, Massey University, Palmerston North 4442, New Zealand
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Xinli Gu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi 832003, China
- Correspondence: (L.L.); (H.Z.); Tel.: +86-0993-2057971 (L.L. & H.Z.)
| |
Collapse
|
6
|
Guo J, Zhu J, Zhao T, Sun Z, Song S, Zhang Y, Zhu D, Cao S, Deng X, Chai Y, Sun Y, Maratbek S, Chen C, Liu L, Zhang H. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front Microbiol 2022; 13:968592. [PMID: 36060772 PMCID: PMC9428795 DOI: 10.3389/fmicb.2022.968592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Brucella can inhabit hostile environments, including osmotic stress. How Brucella responds collectively to osmotic stress is largely unexplored, particularly in spatially structured communities such as a biofilm. To gain insight into this growth mode, we set out to characterize the Brucella melitensis 16M biofilm, describe its phenotype, and carry out a comparative transcriptomic analysis between biofilms under osmotic stress and control conditions. We determined that the bacteria challenged with 1.5 M NaCl had a reduced ability to aggregate and form clumps and develop a biofilm; however, the salt stress promoted the release of the outer membrane vesicles from the biofilm. Together with the genotypical response to osmotic stress, we identified 279 differentially expressed genes in B. melitensis 16M grown under osmotic conditions compared with control conditions; 69 genes were upregulated and 210 downregulated. Under osmotic stress, the main changed genes of biofilm were predicted to be involved in flagellar assembly, cell envelope, translation, small RNA regulation, transport and binding proteins, and energy metabolism. In addition, the ABC transporter was enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. We highlight 12 essential ABC transporter genes associated with a bacterial response to osmotic stress at the biofilm stage, including one specific locus, BME_RS12880, mediating betaine accumulation in biofilms to eliminate osmotic stress. The current study results can help researchers gain insights into B. melitensis 16M biofilm adaptation to osmotic stress and provide information for developing intervention strategies to control Brucella.
Collapse
Affiliation(s)
- Jia Guo
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jiale Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Tianyi Zhao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Zhihua Sun
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shengnan Song
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yu Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Dexin Zhu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuzhu Cao
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingmei Deng
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yingjin Chai
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Yongxue Sun
- Collaborative Innovation Center for Sheep Healthy Farming and Zoonotic Disease Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Suleimenov Maratbek
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- College of Veterinary, National Agricultural University of Kazakhstan, Nur-Sultan, Kazakhstan
| | - Chuangfu Chen
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Liangbo Liu
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- *Correspondence: Liangbo Liu,
| | - Hui Zhang
- State International Joint Research Center for Animal Health Breeding, College of Animal Science and Technology, Shihezi University, Shihezi, China
- Hui Zhang,
| |
Collapse
|
7
|
Analysis of Xylose Operon from Paenibacillus polymyxa ATCC842 and Development of Tools for Gene Expression. Int J Mol Sci 2022; 23:ijms23095024. [PMID: 35563415 PMCID: PMC9104551 DOI: 10.3390/ijms23095024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
With numerous industrial applications, Paenibacillus polymyxa has been accepted as the candidate of the cell factory for many secondary metabolites. However, as the regulatory expression elements in P. polymyxa have not been systematically investigated, genetic modification on account of a specific metabolism pathway for the strain is limited. In this study, a xylose-inducible operon in the xylan-utilizing bacterium ATCC842 was identified, and the relative operon transcription was increased to 186-fold in the presence of xylose, while the relative enhanced green fluorescent protein (eGFP) fluorescence intensity was promoted by over four-fold. By contrast, glucose downregulated the operon to 0.5-fold that of the control. The binding site of the operon was “ACTTAGTTTAAGCAATAGACAAAGT”, and this can be degenerated to “ACTTWGTTTAWSSNATAVACAAAGT” in Paenibacillus spp., which differs from that in the Bacillus spp. xylose operon. The xylose operon binding site was transplanted to the constitutive promoter Pshuttle-09. The eGFP fluorescence intensity assay indicated that both the modified and original Pshuttle-09 had similar expression levels after induction, and the expression level of the modified promoter was decreased to 19.8% without induction. This research indicates that the operon has great potential as an ideal synthetic biology tool in Paenibacillus spp. that can dynamically regulate its gene circuit strength through xylose.
Collapse
|
8
|
González D, Robas M, Fernández V, Bárcena M, Probanza A, Jiménez PA. Comparative Metagenomic Study of Rhizospheric and Bulk Mercury-Contaminated Soils in the Mining District of Almadén. Front Microbiol 2022; 13:797444. [PMID: 35330761 PMCID: PMC8940170 DOI: 10.3389/fmicb.2022.797444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/17/2022] [Indexed: 12/22/2022] Open
Abstract
Soil contamination by heavy metals, particularly mercury (Hg), is a problem that can seriously affect the environment, animals, and human health. Hg has the capacity to biomagnify in the food chain. That fact can lead to pathologies, of those which affect the central nervous system being the most severe. It is convenient to know the biological environmental indicators that alert of the effects of Hg contamination as well as the biological mechanisms that can help in its remediation. To contribute to this knowledge, this study conducted comparative analysis by the use of Shotgun metagenomics of the microbial communities in rhizospheric soils and bulk soil of the mining region of Almadén (Ciudad Real, Spain), one of the most affected areas by Hg in the world The sequences obtained was analyzed with MetaPhlAn2 tool and SUPER-FOCUS. The most abundant taxa in the taxonomic analysis in bulk soil were those of Actinobateria and Alphaproteobacteria. On the contrary, in the rhizospheric soil microorganisms belonging to the phylum Proteobacteria were abundant, evidencing that roots have a selective effect on the rhizospheric communities. In order to analyze possible indicators of biological contamination, a functional potential analysis was performed. The results point to a co-selection of the mechanisms of resistance to Hg and the mechanisms of resistance to antibiotics or other toxic compounds in environments contaminated by Hg. Likewise, the finding of antibiotic resistance mechanisms typical of the human clinic, such as resistance to beta-lactams and glycopeptics (vancomycin), suggests that these environments can behave as reservoirs. The sequences involved in Hg resistance (operon mer and efflux pumps) have a similar abundance in both soil types. However, the response to abiotic stress (salinity, desiccation, and contaminants) is more prevalent in rhizospheric soil. Finally, sequences involved in nitrogen fixation and metabolism and plant growth promotion (PGP genes) were identified, with higher relative abundances in rhizospheric soils. These findings can be the starting point for the targeted search for microorganisms suitable for further use in bioremediation processes in Hg-contaminated environments.
Collapse
Affiliation(s)
- Daniel González
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marina Robas
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Vanesa Fernández
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Marta Bárcena
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Agustín Probanza
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| | - Pedro A Jiménez
- Department of Pharmaceutical Science and Health, CEU Universities, Boadilla del Monte, Spain
| |
Collapse
|
9
|
Bremer E, Hoffmann T, Dempwolff F, Bedrunka P, Bange G. The many faces of the unusual biofilm activator RemA. Bioessays 2022; 44:e2200009. [PMID: 35289951 DOI: 10.1002/bies.202200009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/08/2022]
Abstract
Biofilms can be viewed as tissue-like structures in which microorganisms are organized in a spatial and functional sophisticated manner. Biofilm formation requires the orchestration of a highly integrated network of regulatory proteins to establish cell differentiation and production of a complex extracellular matrix. Here, we discuss the role of the essential Bacillus subtilis biofilm activator RemA. Despite intense research on biofilms, RemA is a largely underappreciated regulatory protein. RemA forms donut-shaped octamers with the potential to assemble into dimeric superstructures. The presumed DNA-binding mode suggests that RemA organizes its target DNA into nucleosome-like structures, which are the basis for its role as transcriptional activator. We discuss how RemA affects gene expression in the context of biofilm formation, and its regulatory interplay with established components of the biofilm regulatory network, such as SinR, SinI, SlrR, and SlrA. We emphasize the additional role of RemA played in nitrogen metabolism and osmotic-stress adjustment.
Collapse
Affiliation(s)
- Erhard Bremer
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Tamara Hoffmann
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Felix Dempwolff
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Patricia Bedrunka
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-University Marburg, Marburg, Germany.,Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| |
Collapse
|
10
|
Chen SJ, Shu HY, Lin GH. Regulation of tert-Butyl Hydroperoxide Resistance by Chromosomal OhrR in A. baumannii ATCC 19606. Microorganisms 2021; 9:microorganisms9030629. [PMID: 33803549 PMCID: PMC8002998 DOI: 10.3390/microorganisms9030629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022] Open
Abstract
In this study, we show that Acinetobacter baumannii ATCC 19606 harbors two sets of ohrR-ohr genes, respectively encoded in chromosomal DNA and a pMAC plasmid. We found no significant difference in organic hydroperoxide (OHP) resistance between strains with or without pMAC. However, a disk diffusion assay conducted by exposing wild-type, ∆ohrR-C, C represented gene on chromosome, or ∆ohr-C single mutants, or ∆ohrR-C∆ohr-C double mutants to tert-butyl hydroperoxide (tBHP) found that the ohrR-p-ohr-p genes, p represented genes on pMAC plasmid, may be able to complement the function of their chromosomal counterparts. Interestingly, ∆ohr-C single mutants generated in A. baumannii ATCC 17978, which does not harbor pMAC, demonstrated delayed exponential growth and loss of viability following exposure to 135 μg of tBHP. In a survival assay conducted with Galleria mellonella larvae, these mutants demonstrated almost complete loss of virulence. Via an electrophoretic mobility shift assay (EMSA), we found that OhrR-C was able to bind to the promoter regions of both chromosomal and pMAC ohr-p genes, but with varying affinity. A gain-of-function assay conducted in Escherichia coli showed that OhrR-C was not only capable of suppressing transformed ohr-C genes but may also repress endogenous enzymes. Taken together, our findings suggest that chromosomal ohrR-C-ohr-C genes act as the major system in protecting A. baumannii ATCC 19606 from OHP stresses, but the ohrR-p-ohr-p genes on pMAC can provide a supplementary protective effect, and the interaction between these genes may affect other aspects of bacterial viability, such as growth and virulence.
Collapse
Affiliation(s)
- Shih-Jie Chen
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
| | - Hung-Yu Shu
- Department of Bioscience Technology, Chang Jung Christian University, Tainan 71101, Taiwan;
| | - Guang-Huey Lin
- Master Program in Microbiology and Immunology, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan;
- International College, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: or
| |
Collapse
|