1
|
Toomik E, Rood L, Hunt I, Nichols DS, Bowman JP, Kocharunchitt C. The Effects of Fat Content on the Shelf-Life of Vacuum-Packed Red Meat. Foods 2024; 13:3669. [PMID: 39594085 PMCID: PMC11594075 DOI: 10.3390/foods13223669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/29/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
When stored at chill temperatures, vacuum-packed (VP) lamb has a much shorter shelf-life than VP beef, primarily due to its higher pH, which could be linked to the higher fat content. The higher pH would create more favourable conditions for the growth of spoilage bacteria, resulting in a shorter shelf-life of meat. To determine the effects of fat on meat shelf-life as it relates to pH, a series of shelf-life trials at 2 °C were conducted using VP beef and lamb mince with varying fat contents (i.e., control with ~5%, 20%, and 50%) as a model system to red meat primal cuts. The results showed that higher fat content reduced the shelf-life of VP beef mince by 24% and lamb mince by 12.5%. This reduction was accompanied by significantly (p < 0.05) decreased glucose and lactic acid levels. Throughout storage, a higher fat content in beef and lamb mince generally resulted in a higher pH by 0.1 (p < 0.05) compared to the respective controls. Higher fat content mince also had faster lactic acid bacteria growth rates (by up to 0.13 Log10 CFU/g/day) and higher maximum populations of presumptive enteric bacteria up to 1.3 Log10 CFU/g (p < 0.05). These results suggest that fat content can negatively influence the shelf-life of VP red meat through lowering glucose and lactic acid levels, raising the pH, and increasing LAB growth rate and maximum population levels of presumptive enteric bacteria.
Collapse
Affiliation(s)
- Elerin Toomik
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Laura Rood
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Ian Hunt
- Biomathematics and Statistics Scotland, James Clerk Maxwell Building, The King’s Buildings, University of Edinburgh, Edinburgh EH9 3FD, UK
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Private Bag 74, Hobart, TAS 7001, Australia
| | - John P. Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| | - Chawalit Kocharunchitt
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 54, Hobart, TAS 7001, Australia
| |
Collapse
|
2
|
Zhu Y, Wang W, Li M, Zhang J, Ji L, Zhao Z, Zhang R, Cai D, Chen L. Microbial diversity of meat products under spoilage and its controlling approaches. Front Nutr 2022; 9:1078201. [PMID: 36532544 PMCID: PMC9752900 DOI: 10.3389/fnut.2022.1078201] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 09/29/2023] Open
Abstract
Meat spoilage (MS) is a complex microbial ecological process involving multiple specific microbial interactions. MS is detrimental to people's health and leads to the waste of meat products which caused huge losses during production, storage, transportation, and marketing. A thorough understanding of microorganisms related to MS and their controlling approaches is a necessary prerequisite for delaying the occurrence of MS and developing new methods and strategies for meat product preservation. This mini-review summarizes the diversity of spoilage microorganisms in livestock, poultry, and fish meat, and the approaches to inhibit MS. This would facilitate the targeted development of technologies against MS, to extend meat's shelf life, and effectively diminish food waste and economic losses.
Collapse
Affiliation(s)
- Yanli Zhu
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Wei Wang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Ming Li
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Jiamin Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Lili Ji
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Zhiping Zhao
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Rui Zhang
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Lin Chen
- Key Lab of Meat Processing of Sichuan Province, Chengdu University, Chengdu, China
| |
Collapse
|
3
|
Beale DJ, Nguyen TV, Shah RM, Bissett A, Nahar A, Smith M, Gonzalez-Astudillo V, Braun C, Baddiley B, Vardy S. Host-Gut Microbiome Metabolic Interactions in PFAS-Impacted Freshwater Turtles ( Emydura macquarii macquarii). Metabolites 2022; 12:747. [PMID: 36005619 PMCID: PMC9415956 DOI: 10.3390/metabo12080747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 01/09/2023] Open
Abstract
Per-and polyfluoroalkyl substances (PFAS) are a growing concern for humans, wildlife, and more broadly, ecosystem health. Previously, we characterised the microbial and biochemical impact of elevated PFAS on the gut microbiome of freshwater turtles (Emydura macquarii macquarii) within a contaminated catchment in Queensland, Australia. However, the understanding of PFAS impacts on this species and other aquatic organisms is still very limited, especially at the host-gut microbiome molecular interaction level. To this end, the present study aimed to apply these leading-edge omics technologies within an integrated framework that provides biological insight into the host turtle-turtle gut microbiome interactions of PFAS-impacted wild-caught freshwater turtles. For this purpose, faecal samples from PFAS-impacted turtles (n = 5) and suitable PFAS-free reference turtles (n = 5) were collected and analysed. Data from 16S rRNA gene amplicon sequencing and metabolomic profiling of the turtle faeces were integrated using MetOrigin to assign host, microbiome, and co-metabolism activities. Significant variation in microbial composition was observed between the two turtle groups. The PFAS-impacted turtles showed a higher relative abundance of Firmicutes and a lower relative abundance of Bacteroidota than the reference turtles. The faecal metabolome showed several metabolites and pathways significantly affected by PFAS exposure. Turtles exposed to PFAS displayed altered amino acid and butanoate metabolisms, as well as altered purine and pyrimidine metabolism. It is predicted from this study that PFAS-impacted both the metabolism of the host turtle and its gut microbiota which in turn has the potential to influence the host's physiology and health.
Collapse
Affiliation(s)
- David J. Beale
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Thao V. Nguyen
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Rohan M. Shah
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Andrew Bissett
- Oceans and Atmosphere, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | - Akhikun Nahar
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Research and Innovation Park, Black Mountain, ACT 2601, Australia
| | - Matthew Smith
- NCMI, Commonwealth Scientific and Industrial Research Organisation, Battery Point, TAS 7004, Australia
| | | | - Christoph Braun
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Brenda Baddiley
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| | - Suzanne Vardy
- Water Quality and Investigation, Science and Technology Division, Department of Environment and Science, Queensland Government, Dutton Park, QLD 4102, Australia
| |
Collapse
|
4
|
Wambui J, Stevens MJA, Cernela N, Stephan R. Unraveling the Genotypic and Phenotypic Diversity of the Psychrophilic Clostridium estertheticum Complex, a Meat Spoilage Agent. Front Microbiol 2022; 13:856810. [PMID: 35418954 PMCID: PMC8996182 DOI: 10.3389/fmicb.2022.856810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
The spoilage of vacuum-packed meat by Clostridium estertheticum complex (CEC), which is accompanied by or without production of copious amounts of gas, has been linked to the acetone–butyrate–ethanol fermentation, but the mechanism behind the variable gas production has not been fully elucidated. The reconstruction and comparison of intra- and interspecies metabolic pathways linked to meat spoilage at the genomic level can unravel the genetic basis for the variable phenotype. However, this is hindered by unavailability of CEC genomes, which in addition, has hampered the determination of genetic diversity and its drivers within CEC. Therefore, the current study aimed at determining the diversity of CEC through comprehensive comparative genomics. Fifty CEC genomes from 11 CEC species were compared. Recombination and gene gain/loss events were identified as important sources of natural variation within CEC, with the latter being pronounced in genomospecies2 that has lost genes related to flagellar assembly and signaling. Pan-genome analysis revealed variations in carbohydrate metabolic and hydrogenases genes within the complex. Variable inter- and intraspecies gas production in meat by C. estertheticum and Clostridium tagluense were associated with the distribution of the [NiFe]-hydrogenase hyp gene cluster whose absence or presence was associated with occurrence or lack of pack distention, respectively. Through comparative genomics, we have shown CEC species exhibit high genetic diversity that can be partly attributed to recombination and gene gain/loss events. We have also shown genetic basis for variable gas production in meat can be attributed to the presence/absence of the hyp gene cluster.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Wambui J, Stevens MJA, Sieber S, Cernela N, Perreten V, Stephan R. Targeted Genome Mining Reveals the Psychrophilic Clostridium estertheticum Complex as a Potential Source for Novel Bacteriocins, Including Cesin A and Estercticin A. Front Microbiol 2022; 12:801467. [PMID: 35095812 PMCID: PMC8792950 DOI: 10.3389/fmicb.2021.801467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/06/2021] [Indexed: 12/31/2022] Open
Abstract
Antimicrobial resistance in pathogenic bacteria is considered a major public health issue necessitating the discovery of alternative antimicrobial compounds. In this regard, targeted genome mining in bacteria occupying under-explored ecological niches has the potential to reveal such compounds, including bacteriocins. In this study, we determined the bacteriocin biosynthetic potential of the psychrophilic Clostridium estertheticum complex (CEC) through a combination of genome mining and phenotypic screening assays. The genome mining was performed in 40 CEC genomes using antiSMASH. The production of bacteriocin-like compounds was phenotypically validated through agar well (primary screening) and disk diffusion (secondary screening) assays using cell free supernatants (CFS) and partially purified extracts, respectively. Stability of four selected CFS against proteolytic enzymes, temperature and pH was determined while one CFS was analyzed by HRMS and MS/MS to identify potential bacteriocins. Twenty novel bacteriocin biosynthetic gene clusters (BBGC), which were classified into eight (six lantibiotics and two sactipeptides) distinct groups, were discovered in 18 genomes belonging to C. estertheticum (n = 12), C. tagluense (n = 3) and genomospecies2 (n = 3). Primary screening linked six BBGC with narrow antimicrobial activity against closely related clostridia species. All four preselected CFS retained activity after exposure to different proteolytic, temperature and pH conditions. Secondary screening linked BBGC1 and BBGC7 encoding a lantibiotic and sactipeptide, respectively, with activity against Bacillus cereus while lantibiotic-encoding BBGC2 and BBGC3 were linked with activity against B. cereus, Staphylococcus aureus (methicillin-resistant), Escherichia coli and Pseudomonas aeruginosa. MS/MS analysis revealed that C. estertheticum CF004 produces cesin A, a short natural variant of nisin, and HRMS indicated the production of a novel sactipeptide named estercticin A. Therefore, we have shown the CEC, in particular C. estertheticum, is a source of novel and stable bacteriocins that have activities against clinically relevant pathogens.
Collapse
Affiliation(s)
- Joseph Wambui
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- *Correspondence: Joseph Wambui,
| | - Marc J. A. Stevens
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Simon Sieber
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Advances in understanding the predominance, phenotypes, and mechanisms of bacteria related to meat spoilage. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Wambui J, Cernela N, Stevens MJA, Stephan R. Whole Genome Sequence-Based Identification of Clostridium estertheticum Complex Strains Supports the Need for Taxonomic Reclassification Within the Species Clostridium estertheticum. Front Microbiol 2021; 12:727022. [PMID: 34589074 PMCID: PMC8473909 DOI: 10.3389/fmicb.2021.727022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022] Open
Abstract
Isolates within the Clostridium estertheticum complex (CEC) have routinely been identified through the 16S rRNA sequence, but the high interspecies sequence similarity reduces the resolution necessary for species level identification and often results in ambiguous taxonomic classification. The current study identified CEC isolates from meat juice (MJS) and bovine fecal samples (BFS) and determined the phylogeny of species within the CEC through whole genome sequence (WGS)-based analyses. About 1,054 MJS were screened for CEC using quantitative real-time PCR (qPCR). Strains were isolated from 33 MJS and 34 BFS qPCR-positive samples, respectively. Pan- and core-genome phylogenomics were used to determine the species identity of the isolates. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were used to validate the species identity. The phylogeny of species within the CEC was determined through a combination of these methods. Twenty-eight clostridia strains were isolated from MJS and BFS samples out of which 13 belonged to CEC. At 95% ANI and 70% dDDH thresholds for speciation, six CEC isolates were identified as genomospecies2 (n=3), Clostridium tagluense (n=2) and genomospecies3 (n=1). Lower thresholds of 94% ANI and 58% dDDH were required for the classification of seven CEC isolates into species C. estertheticum and prevent an overlap between species C. estertheticum and Clostridium frigoriphilum. Combination of the two species and abolishment of current subspecies classification within the species C. estertheticum are proposed. These data demonstrate the suitability of phylogenomics to identify CEC isolates and determine the phylogeny within CEC.
Collapse
Affiliation(s)
- Joseph Wambui
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Draft Genome Sequences of Two Phylogenetically Distinct Clostridium gasigenes Strains, CM001 and CM004, Isolated from Chilled Vacuum-Packed Meat. Microbiol Resour Announc 2020; 9:9/42/e01128-20. [PMID: 33060280 PMCID: PMC7561699 DOI: 10.1128/mra.01128-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We present the draft genome sequences of Clostridium gasigenes strains CM001 and CM004. The genomes are 4,147,089 and 4,191,074 bp with GC contents of 28.7% and 28.8%, respectively. Although both strains belong to the same species, whole-genome sequence-based analyses reveal that the strains are phylogenetically distinct. We present the draft genome sequences of Clostridium gasigenes strains CM001 and CM004. The genomes are 4,147,089 and 4,191,074 bp with GC contents of 28.7% and 28.8%, respectively. Although both strains belong to the same species, whole-genome sequence-based analyses reveal that the strains are phylogenetically distinct.
Collapse
|