1
|
Liu L, Yin Q, Hou Y, Ma R, Li Y, Wang Z, Yang G, Liu Y, Wang H. Fungus reduces tetracycline-resistant genes in manure treatment by predation of bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167462. [PMID: 37783436 DOI: 10.1016/j.scitotenv.2023.167462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
New strategies to remove antibiotic resistance genes (ARGs), one of the most pressing threats to public health, are urgently needed. This study showed that the fungus Phanerochaete chrysosporium seeded to a composting reactor (CR) could remarkably reduce tetracycline-resistant genes (TRGs). The reduction efficiencies for the five main TRGs (i.e., tetW, tetO, tetM, tetPA, and tet(32)) increased by 8 to 100 folds compared with the control without P. chrysosporium, and this could be attributed to the decrease in the quantity of bacteria. Enumeration based on green fluorescence protein labeling further showed that P. chrysosporium became dominant in the CR. Meanwhile, the bacteria in the CR invaded the fungal cells via the cell wall defect of chlamydospore or active invasion. Most of the invasive bacteria trapped inside the fungus could not survive, resulting in bacterial death and the degradation of their TRGs by the fungal nucleases. As such, the predation of tetracycline-resistant bacteria by P. chrysosporium was mainly responsible for the enhanced removal of TRGs in the swine manure treatment. This study offers new insights into the microbial control of ARGs.
Collapse
Affiliation(s)
- Lei Liu
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Qianxi Yin
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Hou
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Rui Ma
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yi Li
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Zhenyu Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Ganggang Yang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Yu Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hailei Wang
- Henan Engineering Laboratory for Bioconversion Technology of Functional Microbes, College of Life Sciences, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Zhu X, Wang Y, Shen C, Zhang S, Wang W. The participation of vacuoles and the regulation of various metabolic pathways under acid stress promote the differentiation of chlamydospore in Trichoderma harzianum T4. J Appl Microbiol 2023; 134:lxad203. [PMID: 37669895 DOI: 10.1093/jambio/lxad203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/25/2023] [Accepted: 09/04/2023] [Indexed: 09/07/2023]
Abstract
AIMS Chlamydospores are a special, differentiated type with high environmental resistance. Consequently, the chlamydospores of Trichoderma harzianum T4 can used to industrialize the latter. This study aimed to investigate the key factors affecting the sporulation type of T. harzianum T4 and the mechanisms underlying this effect. METHODS AND RESULTS In the liquid fermentation of T. harzianum T4, ammonium sulfate (AS) inhibited conidia formation and chlamydospore production. Fermentation tests revealed that acid stress induced sporulation type alteration. Transcriptomic analysis was used to evaluate the adaptation strategy and mechanism underlying spore type alteration under acid stress. The fermentation experiments involving the addition of amino acids revealed that branched-chain amino acids benefited conidia production, whereas β-alanine benefited chlamydospore production. Confocal microscope fluorescence imaging and chloroquine intervention demonstrated that vacuole function was closely related to chlamydospore production. CONCLUSION The sporulation type of T. harzianum T4 can be controlled by adjusting the fermentation pH. T. harzianum T4 cells employ various self-protection measures against strong acid stress, including regulating their metabolism to produce a large number of chlamydospores for survival.
Collapse
Affiliation(s)
- Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chao Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Songhan Zhang
- Agriculture Technology Extension Service Center of Shanghai, Shanghai 201103, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
3
|
Wu F, Guo Z, Cui K, Dong D, Yang X, Li J, Wu Z, Li L, Dai Y, Pan T. Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130878. [PMID: 36731319 DOI: 10.1016/j.jhazmat.2023.130878] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/17/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Since the 1980s, plastic waste in the environment has been accumulating, and little is known about fungi biodegradation, especially in dry environments. Therefore, the research on plastic degradation technology is urgent. In this study, we demonstrated that Phanerochaete chrysosporium (P. chrysposporium), a typical species of white rot fungi, could react as a highly efficient biodegrader of polylactic acid (PLA), and 34.35 % of PLA degradation was obtained during 35-day incubation. A similar mass loss of 19.71 % could be achieved for polystyrene (PS) degradation. Here, we presented the visualization of the plastic deterioration process and their negative reciprocal on cell development, which may be caused by the challenge of using PS as a substrate. The RNA-seq analysis indicated that adaptations in energy metabolism and cellular defense were downregulated in the PS group, while lipid synthesis was upregulated in the PLA-treated group. Possible differentially expressed genes (DEG) of plastic degradation, such as hydrophobic proteins, lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase (Lac), Cytochrome P450 (CYP450), and genes involved in styrene or benzoic acid degradation pathways have been recorded, and we proposed a PS degradation pathway.
Collapse
Affiliation(s)
- Feiyan Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China.
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Dazhuang Dong
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Xue Yang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Jie Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Zhangzhen Wu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Lele Li
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Yaodan Dai
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| | - Tao Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
4
|
Yu M, Yu J, Cao H, Pan X, Song T, Qi Z, Du Y, Huang S, Liu Y. The Velvet Protein UvVEA Regulates Conidiation and Chlamydospore Formation in Ustilaginoidea virens. J Fungi (Basel) 2022; 8:jof8050479. [PMID: 35628735 PMCID: PMC9148152 DOI: 10.3390/jof8050479] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Rice false smut, caused by Ustilaginoidea virens, is a serious disease of rice worldwide, severely reducing the quantity and quality of rice production. The conserved fungal velvet proteins are global regulators of diverse cellular processes. We identified and functionally characterized two velvet genes, UvVEA and UvVELB, in U. virens. The deletion of these genes affected the conidiation of U. virens but had no effect on the virulence of this pathogen. Interestingly, the ΔUvVEA mutants appeared in the form of smaller false smut balls with a reduced number of chlamydospores compared with the wide-type strains. In addition, the deletion of UvVEA affected the expression of some transmembrane transport genes during chlamydospore formation and rice false smut balls development. Furthermore, the ΔUvVEA mutants were shown to be defective in the utilization of glucose. These findings proved the regulatory mechanism underlying the formation of rice false smut balls and chlamydospores and provided a basis for the further exploration of the mechanism of these processes.
Collapse
Affiliation(s)
- Mina Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Tianqiao Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
| | - Shiwen Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.Y.); (S.H.)
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.Y.); (H.C.); (X.P.); (T.S.); (Z.Q.); (Y.D.)
- Correspondence: ; Tel.: +86-25-8439-1002
| |
Collapse
|