1
|
Andreu V, Gimeno E, Pascual JA, Campo J. The Anthropocene fingerprint: Hazardous elements in waters of a coastal Mediterranean alluvial plain (Valencia, Spain). Heliyon 2024; 10:e36044. [PMID: 39296082 PMCID: PMC11409034 DOI: 10.1016/j.heliyon.2024.e36044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/21/2024] Open
Abstract
This study focuses on the alluvial plain spanning between the Turia and Jucar rivers (486 km2) in Valencia, Spain - a highly productive agricultural area that also involves a Natural Park (La Albufera). Thirty-five points across different water sources and land uses were sampled to map the spatial distribution of 14 heavy metals (Al, As, B, Cd, Co, Cr, Cu, Fe, Li, Ni, Pb, Sr, Tl, and Zn), and to study the potential influence of water characteristics and environmental factors on them. Two pollution indexes were applied, Heavy Metal Evaluation Index (HEI) and Water Pollution Index (WPI), to assess the water quality state in the area. High levels were predominantly found in the southern region, particularly within rice farming areas. For B, Sr, and Tl, all samples exceeded WHO limits, EU legislation, or EPA benchmarks, with 61.76 % and 85.71 % of samples surpassing standards for Al and Li, respectively. Water salinization parameters greatly influenced the dynamics of Al, As, B, Li, Sr, and Tl. Analysis using both indexes (HEI and WPI) revealed poor water quality in the area, particularly in rice fields, posing potential toxic effects on ecosystems and human health. The findings of this work are valuable for understanding elements of concern in coastal wetlands under global change.
Collapse
Affiliation(s)
- Vicente Andreu
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Eugenia Gimeno
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Juan Antonio Pascual
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| | - Julián Campo
- Desertification and Environmental Quality Group, Center of Research on Desertification-CIDE (CSIC-UV- GV), Carretera Moncada a Náquera km 4.5, 46113, Moncada, Spain
| |
Collapse
|
2
|
Wu Y, Zhao Y, Jia X, Liu Y, Niu J. Phosphomolybdic acid enhancing hexavalent chromium bio-reduction in long-term operation: Optimal dosage and mechanism analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167328. [PMID: 37751836 DOI: 10.1016/j.scitotenv.2023.167328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
The bio-reduction of Cr(VI) is regarded as a feasible and safe strategy to treat Cr pollution. The optimal concentration of phosphomolybdic acid (PMo12) for Cr(VI) reduction and the catalytic mechanism of electron behavior (electron production, electron transport and electron consumption) were revealed in denitrifying biofilm systems. The results showed that 0.1 mM PMo12 could achieve 92.5 % removal efficiency of 90 mg/L Cr(VI), which was 47.7 % higher than that of PMo12-free system, and improve the extracellular fixation capacity of Cr(III). The activity of peroxidase (POD) was significantly promoted by PMo12 to repair oxidative stress damage caused by Cr(VI) reduction. Additionally, analysis of electron behavior demonstrated that PMo12 could enhance key indicators of electron production, transport and consumption. This led to rapid activation of the electron pathway inhibited by Cr(VI), enabling simultaneous efficient nitrogen removal and Cr(VI) reduction in the biofilm system. This discovery will provide an efficient technique for Cr-containing wastewater treatment.
Collapse
Affiliation(s)
- Yichen Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| | - Xvlong Jia
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yinuo Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Jiaojiao Niu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Zhao W, Zhu KH, Ge ZM, Lv Q, Liu SX, Zhang W, Xin P. Effects of plastic contamination on carbon fluxes in a subtropical coastal wetland of East China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118654. [PMID: 37481882 DOI: 10.1016/j.jenvman.2023.118654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/03/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Coastal wetlands are recognized as carbon sinks that play an important role in mitigating global climate change because of the strong carbon uptake by vegetation and high carbon sequestration in the soil. Over the last few decades, plastic waste pollution in coastal zones has become increasingly serious owing to high-intensity anthropogenic activities. However, the influence of plastic waste (including foam waste) accumulation in coastal wetlands on carbon flux remains unclear. In the Yangtze Estuary, we investigated the variabilities of vegetation growth, carbon dioxide (CO2) and methane (CH4) fluxes, and soil properties in a clean Phragmites australis marsh and mudflat and a plastic-polluted marsh during summer and autumn. The clean marsh showed a strong CO2 uptake capacity (a carbon sink), and the clean mudflat showed a weak CO2 sink during the measurement period. However, polluted marshes are a significant source of CO2 emissions. Regardless of the season, the gross primary production and vegetation biomass of the polluted marshes were on average 9.5 and 1.1 times lower than those in the clean marshes, respectively. Ecosystem respiration and CH4 emissions in polluted marshes were significantly higher than those in clean marshes and mudflats. Generally, the soil bulk density and salinity in polluted marshes were lower, whereas the median particle size was higher at the polluted sites than at the clean sites. Increased soil porosity and decreased salinity may favor CO2 and CH4 emissions through gas diffusion pathways and microbiological behavior. Moreover, the concentrations of heavy metals in the soil of plastic-polluted marshes were 1.24-1.49 times higher than those in the clean marshes, which probably limited vegetation growth and CO2 uptake. Our study highlights the adverse effects of plastic pollution on the carbon sink functions of coastal ecosystems, which should receive global attention in coastal environmental management.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Ke-Hua Zhu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Qing Lv
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Shi-Xian Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Pei Xin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| |
Collapse
|
4
|
Li L, Chen M, Liu S, Bao H, Yang D, Qu H, Chen Y. Does the aging behavior of microplastics affect the process of denitrification by the difference of copper ion adsorption? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131276. [PMID: 36989773 DOI: 10.1016/j.jhazmat.2023.131276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 05/03/2023]
Abstract
Riparian sediment is a hot zone for denitrification that can withhold copper and microplastics (MPs) from outside. It has been proven that MPs affect denitrification and the existing forms of copper in the environment. However, the impact of copper on sediment denitrification under exposure to MPs remains unclear. This study revealed the response of sediment denitrification to copper availability under the adsorption of MPs and the complexation of MP-derived dissolved organic matter (DOM). These results showed that MP accumulation inhibited denitrification. However, aged MPs increased the activity of nitrite reductase (12.64%), nitrogen dioxide reductase (37.68%), and electron transport (28.93%) compared with pristine MPs. The aging behavior of MPs alleviated 28.18% nitrite accumulation and 16.41-118.35% nitrous oxide emissions. Thus, the aging behavior of MPs alleviated the inhibition of denitrification. Notably, we resolved the copper ion adsorption and complexation by MPs, MP-derived DOM contributed to the denitrification process, and we found that the key nitrogen removal factors were affected by KL, KM, and K2. These results fill a gap in our understanding of biochemical synthesis of MPs during denitrification. Furthermore, it can be used to build a predictive understanding of the long-term effects of MPs on the sediment nitrogen cycle.
Collapse
Affiliation(s)
- Lanxi Li
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Mengli Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Shushan Liu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Huanyu Bao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Dongxu Yang
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China
| | - Yi Chen
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
5
|
Pizarro L, Magalhães C, Almeida CMR, Carvalho MDF, Semedo M. Cadmium effects on net N2O production by the deep-sea isolate Shewanella loihica PV-4. FEMS Microbiol Lett 2023; 370:fnad047. [PMID: 37279908 PMCID: PMC10337742 DOI: 10.1093/femsle/fnad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/19/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Deep-sea mining may lead to the release of high concentrations of metals into the surrounding seabed, which can disturb important ecosystem functions provided by microbial communities. Among these, the production of N2O and its reduction to N2 is of great relevance since N2O is an important greenhouse gas. Metal impacts on net N2O production by deep-sea bacteria are, however, currently unexplored. Here, we evaluated the effects of cadmium (Cd) on net N2O production by a deep-sea isolate, Shewanella loihica PV-4. We performed a series of Cd exposure incubations in oxic conditions and determined N2O fluxes during induced anoxic conditions, as well as the relative expression of the nitrite reductase gene (nirK), preceding N2O production, and N2O reductase gene (nosZ), responsible for N2O reduction. Net N2O production by S. loihica PV-4 exposed to Cd was strongly inhibited when compared to the control treatment (no metal). Both nirK and nosZ gene expression were inhibited in reactors with Cd, but nirK inhibition was stronger, supporting the lower net N2O production observed with Cd. The Cd inhibition of net N2O production observed in this study poses the question whether other deep-sea bacteria would undergo the same effects. Future studies should address this question as well as its applicability to complex communities and other physicochemical conditions, which remain to be evaluated.
Collapse
Affiliation(s)
- Leonor Pizarro
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Faculty of Biotechnology, Catholic University of Portugal, Porto 4169-005, Portugal
| | - Catarina Magalhães
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Biology, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - C Marisa R Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Department of Chemistry and Biochemistry, Faculty of Sciences (FCUP), University of Porto, Porto 4169-007, Portugal
| | - Maria de Fátima Carvalho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050-313, Portugal
| | - Miguel Semedo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos 4450-208, Portugal
| |
Collapse
|
6
|
Bai X, Li Y, Jing X, Zhao X, Zhao P. Response mechanisms of bacterial communities and nitrogen cycle functional genes in millet rhizosphere soil to chromium stress. Front Microbiol 2023; 14:1116535. [PMID: 36910173 PMCID: PMC9992798 DOI: 10.3389/fmicb.2023.1116535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/27/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction A growing amount of heavy metal contamination in soil disturbs the ecosystem's equilibrium, in which microbial populations play a key role in the nutrient cycle of soils. However, given the different sensitivity of microbial communities to different spatial and temporal scales, microbial community structure and function also have varied response mechanisms to different heavy metal contaminated habitats. Methods In this study, samples were taken prior to Cr stress (CK) and 6 h and 6 days after Cr stress (Cr_6h, Cr_6d) in laboratory experiments. High-throughput sequencing revealed trends in the structure and diversity of the bacterial communities, and real-time fluorescence quantitative polymerase chain reaction (qPCR) was used to analyze trends in nitrogen cycle functional genes (AOA-amoA, AOB-amoA, narG, nirK, and nifH). Results The findings showed that (1) the composition structure of the soil bacterial community changed considerably in Cr-stressed soils; α-diversity showed significant phase transition characteristic from stress to stability (p < 0.05). (2) With an overall rising tendency, the abundance of the nitrogen cycle functional genes (AOA-amoA and AOB-amoA) decreased considerably before increasing, and α-diversity dramatically declined (p < 0.05). (3) The redundancy analysis (RDA) and permutational multivariate analysis of variance (PERMANOVA) tests results showed that the soil physicochemical parameters were significantly correlated with the nitrogen cycle functional genes (r: 0.4195, p < 0.01). Mantel analysis showed that available nitrogen (N), available potassium (K), and available phosphorus (P) were significantly correlated with nifH (p = 0.006, 0.008, 0.004), and pH was highly significantly correlated with nifH (p = 0.026). The PLS-ME (partial least squares path model) model further demonstrated a significant direct effect of the soil physicochemical parameters on the nitrogen cycling functional genes. Discussion As a result, the composition and diversity of the bacterial community and the nitrogen cycle functional genes in Cr-stressed agricultural soils changed considerably. However, the influence of the soil physicochemical parameters on the functional genes involved in the nitrogen cycle was greater than that of the bacterial community. and Cr stress affects the N cycling process in soil mainly by affecting nitrification. This research has significant practical ramifications for understanding the mechanisms of microbial community homeostasis maintenance, nitrogen cycle response mechanisms, and soil remediation in heavy metal-contaminated agricultural soils.
Collapse
Affiliation(s)
- Xue Bai
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Yvjing Li
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Xiuqing Jing
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Xiaodong Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| | - Pengyu Zhao
- Department of Biology, Taiyuan Normal University, Taiyuan, China
| |
Collapse
|
7
|
Ma J, Niu A, Liao Z, Qin J, Xu S, Lin C. Factors affecting N 2O fluxes from heavy metal-contaminated mangrove soils in a subtropical estuary. MARINE POLLUTION BULLETIN 2023; 186:114425. [PMID: 36462424 DOI: 10.1016/j.marpolbul.2022.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
A 1-year field monitoring program was carried out to observe seasonal variation in N2O fluxes at two typical mangrove wetlands in a subtropical estuary. The soils in the island-type mangrove wetland had a higher level of heavy metal(loid) contamination and a lower level of salinity compared to the small bay-type mangrove wetland. While there was a high level of similarity in the seasonal variation pattern of N2O fluxes between the two investigated sites with both being significantly higher in summer than in other seasons, the average of N2O fluxes in the island-type mangrove wetland was 7.19 μg·m-2·h-1, which tended to be lower compared to the small bay-type mangrove wetland (15.63 μg·m-2·h-1). Overall, N2O flux was closely related to soil-borne heavy metal(loid)s, showing a trend to decrease with increasing concentration of these heavy metal(loid)s. The N2O fluxes increased with decreasing abundance of either denitrifiers or nitrifiers. But the opposite was observed for the anammox bacteria present in the soils. The anammox bacteria were more sensitive to heavy metal(loid) stress but more tolerated high salinity encountered in the investigated soils compared to the denitrifiers or nitrifiers. It appears that anammox reactions mediated by anammox bacteria played a key role in affecting the spatial variation in N2O fluxes from the mangrove soils in the study area. And an increased level of ammonium in soils tended to promote the activity of anammox bacteria and consequently enhanced N2O emission from the mangrove soils.
Collapse
Affiliation(s)
- Jiaojiao Ma
- School of Geography, South China Normal University, Guangzhou 510631, China; Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Anyi Niu
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Zhenni Liao
- School of Geography, South China Normal University, Guangzhou 510631, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Songjun Xu
- School of Geography, South China Normal University, Guangzhou 510631, China.
| | - Chuxia Lin
- Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC 3125, Australia.
| |
Collapse
|
8
|
Li H, Miller T, Lu J, Goel R. Nitrogen fixation contribution to nitrogen cycling during cyanobacterial blooms in Utah Lake. CHEMOSPHERE 2022; 302:134784. [PMID: 35504465 PMCID: PMC10149033 DOI: 10.1016/j.chemosphere.2022.134784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 05/03/2023]
Abstract
Nitrogen (N) cycling is an essential process in lake systems and N-fixation is an important component of it. Recent studies have also found that nitrate reduction through heterotrophic denitrification in lake systems did not prevent harmful cyanobacterial blooms, but instead, may have favored the dominance of N2-fixing cyanobacteria. The overall objective of this study was to estimate nitrogen fixation rates and the expressions of associated nitrogenase (nif gene) functional gene at several sites at different occasions in freshwater Utah Lake. For comparison purposes, one time sampling was also conducted in the brackish Farmington Bay of Great Salt Lake (GSL). The microbial ecology of the top 20-cm of surface water was investigated to assess the dominant cyanobacterial communities and N-related metabolisms. Our study revealed that Dolichospermum and Nodularia were potential N2-fixers for Utah Lake and brackish Farmington Bay, respectively. The in situ N2-fixation rates were 0-0.73 nmol N hr-1L-1 for Utah Lake and 0-0.85 nmol N hr-1L-1 for Farmington Bay, and these rates positively correlated with the abundance and expressions of the nif gene. In addition, nitrate reduction was measured in sediment (0.002-0.094 mg N VSS-1 hr-1). Significantly positive correlations were found among amoA, nirS and nirK abundance (R = 0.56-0.87, p < 0.05, Spearman) in both lakes. An exception was the lower nirK gene abundance detected at one site in Farmington Bay where high ammonium retentions were also detected. Based on a mass balance approach, we concluded that the amount of inorganic N loss through denitrification still exceeded the N input by N2-fixation, much like in most lakes, rivers, and marine ecosystems. This indicates that N cycling processes such as denitrification mediated by heterotrophic bacteria contributes to N-export from the lakes resulting in N limitations.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, USA
| | - Theron Miller
- Wasatch Front Water Quality Council, Salt Lake City, UT, USA
| | - Jingrang Lu
- United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, The University of Utah, 110 S Central Campus Drive, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
9
|
Zhao H, Lin J, Wang X, Shi J, Dahlgren RA, Xu J. Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14305-14315. [PMID: 34617741 DOI: 10.1021/acs.est.1c04409] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.
Collapse
Affiliation(s)
- Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|