1
|
Ma W, Yu J, Yang F, Zhang X, Zhang F, Jin W, Sun Z, Zhao Z, Jia S, Zhong C, Xue J. Metagenomic analysis of the relationship between the microorganisms and the volatiles' development in the wines during spontaneous fermentation from the eastern foothills of the Ningxia Helan mountains in China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6429-6439. [PMID: 37209219 DOI: 10.1002/jsfa.12718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 04/21/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The natural fermentation of multispecies microbial communities is responsible for unique flavors of winery regions of the eastern foothills of the Ningxia Helan Mountains in China. However, the participation of different microorganisms in the metabolic network for the development of important flavor substances is not clearly defined. Microbial population and diversity on different fermentation phases of Ningxia wine were analyzed by metagenomic sequencing approach. RESULTS Gas chromatography-mass spectrometry and ion chromatography were used to identify flavor components, and 13 esters, 13 alcohols, nine aldehydes and seven ketones were detected in volatile substances with odor activity values > 1, and eight organic acids were detected as important flavor components in young wine. Thus, 52 238 predicted protein-coding genes from 24 genera were identified in the Kyoto Encyclopedia of Genes and Genomes level 2 pathways of global and overview maps, and the genes were primarily involved in amino acid metabolism and carbohydrate metabolism. Major microbial genera (Saccharomyces, Tatumella, Hanseniaspora, Lactobacillus, and Lachancea) were closely related to self-characteristic compound metabolism and further contributed to wine flavor. CONCLUSION This study clarifies the different metabolic roles of microorganisms in flavor formation during Ningxia wine spontaneous fermentation. Saccharomyces, dominant fungi involved in glycolysis and pyruvate metabolism, produces not only ethanol but also two important precursors, pyruvate and acetyl-CoA, which are necessary for the tricarboxylic acid cycle, fatty acid metabolism, amino acid metabolism, and flavor formation. Lactobacillus and Lachancea, dominant bacteria involved in lactic acid metabolism. Tatumella, dominant bacteria involved in amino acid metabolism, fatty acid metabolism, and acetic acid metabolism to produce esters in the Shizuishan City region samples. These findings provide insights into the use of local functional strains to generate unique flavor formation, as well as improved stability and quality, in wine production. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenrui Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Jiajun Yu
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Fan Yang
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Xiaomeng Zhang
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Fengjie Zhang
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Weiyun Jin
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Zhiwei Sun
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| | - Zhihui Zhao
- Technology research and development department, Ningxia Chinese Wolfberry Industry Co., Ltd, Zhongwei, China
| | - Shiru Jia
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology (Ministry of Education), Tianjin University of Science and Technology, Tianjin, China
| | - Jie Xue
- International Joint Research Center of Quality and Safety of Alcoholic Beverages, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, China
| |
Collapse
|
2
|
The Application of Wood Species in Enology: Chemical Wood Composition and Effect on Wine Quality. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12063179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging wine is a usual practice in winemaking, as the wine quality improves due to the compounds extracted from wood barrels or chips, cubes, blocks, or staves used. The wood species used are traditionally oak, namely from Quercus petraea, Q. alba, or Q. robur species. In the last years, the increasing request for oak wood has caused a significant increase in environmental and production costs. Therefore, heartwood from several alternative species has been considered a potential wood source for winemaking and aging. Thus, the main purpose of this review is the application of these alternative wood species on wine production and to discuss the advantages and disadvantages of its use compared with the traditional wood species, namely oak wood. In addition, a brief chemical characterization of several wood species with possible application in enology is also discussed in this review.
Collapse
|
3
|
ZHANG L, YANG Y, FENG S, LUO G, ZHANG M. Correlation between microbial communities changes and physicochemical indexes of Dazu Dongcai during different fermentation periods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.93522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ling ZHANG
- Chongqing University of Arts and Sciences, China; Chongqing Three Gorges University, China
| | - Yan YANG
- Chongqing University of Arts and Sciences, China; Chongqing Three Gorges University, China
| | - Shunxin FENG
- Chongqing University of Arts and Sciences, China
| | - Gen LUO
- Chongqing University of Arts and Sciences, China
| | - Meixia ZHANG
- Chongqing University of Arts and Sciences, China
| |
Collapse
|
4
|
XUE B, YU J, ZHANG J, HAO F, ZHANG X, DONG J, SUN J, XUE J. Microbial diversity analysis of vineyard son the eastern foothills of the Helan Mountain region using high-throughput sequencing. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.66320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Bei XUE
- Tibet Agriculture and Animal Husbandry University, Tibet
| | - Jiajun YU
- Fermentation Industries Co. Ltd, China
| | - Jiachen ZHANG
- Tibet Agriculture and Animal Husbandry University, Tibet
| | - Feike HAO
- Fermentation Industries Co. Ltd, China
| | | | | | - Jinyuan SUN
- Beijing Technology and Business University, China
| | - Jie XUE
- Fermentation Industries Co. Ltd, China; China Wine Industry Technology Institute, Ningxia
| |
Collapse
|