1
|
Tang Y, Zuo F, Li C, Zhang Q, Gao W, Cheng J. Combined effects of biochar and biodegradable mulch film on chromium bioavailability and the agronomic characteristics of tobacco. Sci Rep 2024; 14:6867. [PMID: 38514728 PMCID: PMC10957920 DOI: 10.1038/s41598-024-56973-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/13/2024] [Indexed: 03/23/2024] Open
Abstract
Biochar (BC) and biodegradable mulch film (BMF) are both commonly used means of production in agriculture. In recent years, most studies have focused on the effects of BC or BMF on soil heavy metal pollution, while they have neglected the combined effects. In this study, a pot experiment was conducted to examine the impacts of BMF, BC, and combined BMF and BC (CMB) on the mobility of chromium (Cr) and the agronomic characteristics of flue-cured tobacco. Compared with the control, BMF, BC, and CMB significantly reduced the concentrations of diethylenetriamine pentaacetic acid (DTPA) extractable Cr in soils by 29.07-29.75%, 45.35-48.54%, and 34.21-37.92%, respectively. In comparison to the application of BMF and BC alone, co-application reduced the availability of Cr in soil via increasing the adsorption of soil Cr and soil enzyme activity, which resulted in the decrease of Cr content and bioconcentration factor and in plants. Moreover, the combined application increased the plant height, stem diameter, leaf area, total root area, root tip number, and root activity of tobacco, which leaded to increase in leaf and root biomass by 11.40-67.01% and 23.91-50.74%, respectively. Therefore, the application of CMB can reduce the heavy metal residues in tobacco leaves and improve tobacco yield and quality.
Collapse
Affiliation(s)
- Yuan Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Fumin Zuo
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Changhong Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Qinghai Zhang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China
| | - Weichang Gao
- Guizhou Academy of Tobacco Science, Guiyang, 550081, Guizhou, China.
| | - Jianzhong Cheng
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guian New Area, 561113, Guizhou, China.
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, Guizhou, China.
| |
Collapse
|
2
|
Xu Y, Ding H, Zhang G, Li Z, Guo Q, Feng H, Qin F, Dai L, Zhang Z. Green manure increases peanut production by shaping the rhizosphere bacterial community and regulating soil metabolites under continuous peanut production systems. BMC PLANT BIOLOGY 2023; 23:69. [PMID: 36726076 PMCID: PMC9890850 DOI: 10.1186/s12870-023-04079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Green manure (GM) is a crop commonly grown during fallow periods, which has been applied in agriculture as a strategy to regulate nutrient cycling, improve organic matter, and enhance soil microbial biodiversity, but to date, few studies have examined the effects of GM treatments on rhizosphere soil bacterial community and soil metabolites from continuous cropping peanut field. RESULTS In this study, we found that the abundances of several functionally significant bacterial groups containing Actinobacteria, Acidobacteria, and genus Sphingomonas, which are associated with nitrogen cycling, were dramatically increased in GM-applied soils. Consistent with the bacterial community results, metabolomics analysis revealed a strong perturbation of nitrogen- or carbon-related metabolisms in GM-applied soils. The substantially up-regulated beneficial metabolites including sucrose, adenine, lysophosphatidylcholine (LPC), malic acid, and betaines in GM-applied soils may contribute to overcome continuous cropping obstacle. In contrast to peanut continuous cropping, planting winter wheat and oilseed rape in winter fallow period under continuous spring peanut production systems evidently improved the soil quality, concomitantly with raised peanut pod yield by 32.93% and 25.20%, in the 2020 season, respectively. CONCLUSIONS GMs application is an effective strategy to overcome continuous cropping obstacle under continuous peanut production systems by improving nutrient cycling, soil metabolites, and rhizobacterial properties.
Collapse
Affiliation(s)
- Yang Xu
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Hong Ding
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Guanchu Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Zelun Li
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Qing Guo
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Hao Feng
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Feifei Qin
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China
| | - Liangxiang Dai
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China.
| | - Zhimeng Zhang
- Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Wang A, Chang Q, Chen C, Zhong X, Yuan K, Yang M, Wu W. Degradation characteristics of biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation. AMB Express 2022; 12:81. [PMID: 35732981 PMCID: PMC9218028 DOI: 10.1186/s13568-022-01420-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
This study investigated the degradation characteristics of different biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation. Field experiment with biodegradable films, including poly-(butylene adipate-co-butylene terephthalate) PBAT, (poly-carbon dioxide) PCO2, (poly propylene carbonate) PPC, as well as common mulch film (CK1) and uncovered mulch film (CK2) were conducted on Longxiang taro in 2020 and 2021 respectively. The degradation rate of the three biodegradable films was PBAT > PPC > PCO2. Compared with CK1, the alkali-hydrolyzed N of PBAT at the growth stage and fruiting stage significantly increased in 2020 and 2021, respectively (both, P < 0.05). The average content of available P of PPC at seedling stage was higher than that in PCO2, and CK1 was significantly decreased compared with that in CK2 (all, P < 0.05). The content of soil available K and organic matter in different growth stages of taro in all film mulching treatments were decreased in comparison to CK2. Moreover, compared with CK2, PCO2 biodegradable film significantly increased plant height at seedling and growth stage, stem diameter at growth stage, and leaf area index at fruiting stage (all, P < 0.05). Similarly, the yield of mother and filial bulbs of PPC, PCO2 and PBAT were significantly higher than those of CK2 in 2020 and 2021, respectively (all, P < 0.05). However, no significant differences were found in starch, polysaccharide and protein contents among different treatments. The three biodegradable films, especially PCO2, can significantly affect soil nutrient content, promote plant growth and improve taro yield.
Collapse
Affiliation(s)
- An Wang
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China
| | - Qingtao Chang
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China
| | - Chunsheng Chen
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Xiaoquan Zhong
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Kexiang Yuan
- Department of Vegetable, Xinghua Modern Agriculture Development Service Center, Taizhou, 225700, China
| | - Meihua Yang
- Xinghua Meihua Vegetable Planting Cooperative, Taizhou, 225700, China
| | - Wei Wu
- Special Grain Classics Laboratory, Taizhou Institute of Agricultural Science, Jiangsu Academy of Agricultural Sciences, 56 Autumn Snow Lake Avenue, Taizhou, 225300, China.
| |
Collapse
|
4
|
Soil Type Influences Rhizosphere Bacterial Community Assemblies of Pecan Plantations, a Case Study of Eastern China. FORESTS 2022. [DOI: 10.3390/f13030363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The rhizosphere microbiome is closely related to forest health and productivity. However, whether soil type affects pecan (Carya illinoinensis) rhizosphere microbiomes is unclear. We aimed to explore the diversity and structural characteristics of rhizosphere bacteria associated with pecan plantations grown in three soil types (Luvisols, Cambisols, Solonchaks) in Eastern China and analyze their potential functions through high-throughput sequencing. The results showed that the diversity and community structure of rhizosphere bacteria in pecan plantations were significantly affected by soil type and the pH, available phosphorus content, electrical conductivity, soil moisture, and ammonium nitrogen contents were the main factors. At the phylum level, the rhizosphere bacterial community composition was consistent, mainly included Actinobacteria, Proteobacteria, Acidobacteria, and Chloroflexi. At the family level, the pecan plantations formed different rhizosphere enriched biomarkers due to the influence of soil type, with functional characteristics such as plant growth promotion and soil nutrient cycling. In addition, there existed low abundance core species such as Haliangiaceae, Bryobacteraceae, and Steroidobacteraceae. They played important roles in the rhizosphere environments through their functional characteristics and community linkages. Overall, this study provides a basis for the study of the rhizosphere microbiome in different soil types of pecan plantations, and plays an important role in the sustainable management of forest soil.
Collapse
|
5
|
Li H, Li C, Song X, Liu Y, Gao Q, Zheng R, Li J, Zhang P, Liu X. Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation. Sci Rep 2022; 12:2758. [PMID: 35177784 PMCID: PMC8854431 DOI: 10.1038/s41598-022-06789-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/07/2022] [Indexed: 01/16/2023] Open
Abstract
Long-term monocultures have severely inhibited the cultivation of Chinese peanut (Arachis hypogaea L.). In this study, the effects of continuous cropping on soil chemical properties and microbial communities were investigated in peanut fields that had been in crop rotation for 10 years and in monoculture for 10 years. The results found that long-term monoculture increased the activities of available potassium, available phosphorus, available nitrogen, soil organic matter, urease, acid phosphatase and catalase; while decreasing the activity of catalase. The diversity and abundance of soil bacteria and fungi is higher under continuous peanut cultivation. At the genus level, the relative abundance of potentially beneficial microflora genera was higher in the rhizosphere soil of rotational cropping than in continuous cropping, while the opposite was true for the relative abundance of potentially pathogenic fungal genera. Principal coordinates and cluster analysis indicated that continuous cropping altered the structure of the microbial community. The results of the functional predictions showed significant differences in the functioning of the rhizosphere microbial community between continuous and rotational cropping. In conclusion, long-term continuous cropping changed the chemical properties of the soil, altered the structure and function of the soil bacterial and fungal communities in peanut rhizosphere, which to some extent reduced the relative abundance of potentially beneficial microbial genera and increased the relative abundance of potentially pathogenic fungal genera, thus increasing the potential risk of soil-borne diseases and reducing the yield and quality of peanut. Therefore, in the actual production process, attention should be paid not only to the application of chemical fertilizers, but also to crop rotation and the application of microbial fertilizers.
Collapse
Affiliation(s)
- Huying Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China.,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China
| | - Chaohui Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xin Song
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Yue Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Qixiong Gao
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Rui Zheng
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Jintai Li
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Pengcheng Zhang
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China
| | - Xunli Liu
- College of Forestry, Shandong Agricultural University, No. 61, Daizong Street, Taian, 271018, Shandong, China. .,State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Taian, 271018, China.
| |
Collapse
|