1
|
McMillan HM, Kuehn MJ. Proteomic Profiling Reveals Distinct Bacterial Extracellular Vesicle Subpopulations with Possibly Unique Functionality. Appl Environ Microbiol 2023; 89:e0168622. [PMID: 36533919 PMCID: PMC9888257 DOI: 10.1128/aem.01686-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 12/23/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) are 20- to 200-nm secreted packages of lipids, small molecules, and proteins that contribute to diverse bacterial processes. In plant systems, OMVs from pathogenic and beneficial strains elicit plant immune responses that inhibit seedling growth and protect against future pathogen challenge. Previous studies of OMV-plant interactions suggest functionally important differences in the protein composition of Pseudomonas syringae and Pseudomonas fluorescens OMVs, and that their composition and activity differ as a result of medium culture conditions. Here, we show that plant apoplast-mimicking minimal medium conditions impact OMV protein content dramatically in P. syringae but not in P. fluorescens relative to complete medium conditions. Comparative, 2-way analysis of the four conditions reveals subsets of proteins that may contribute to OMV-mediated bacterial virulence and plant immune activation as well as those involved in bacterial stress tolerance or adaptation to a beneficial relationship with plants. Additional localization enrichment analysis of these subsets suggests the presence of outer-inner membrane vesicles (OIMVs). Collectively, these results reveal distinct differences in bacterial extracellular vesicle cargo and biogenesis routes from pathogenic and beneficial plant bacteria in different medium conditions and point to distinct populations of vesicles with diverse functional roles. IMPORTANCE Recent publications have shown that bacterial vesicles play important roles in interkingdom communication between bacteria and plants. Indeed, our recently published data reveal that bacterial vesicles from pathogenic and beneficial strains elicit immune responses in plants that protect against future pathogen challenge. However, the molecules underlying these striking phenomena remain unknown. Our recent work indicated that proteins packaged in vesicles are critically important for vesicle-mediated seedling growth inhibition, often considered an indirect measure of plant immune activation. In this study, we characterize the protein cargo of vesicles from Pseudomonas syringae pathovar tomato DC3000 and Pseudomonas fluorescens from two different medium conditions and show that distinct subpopulations of vesicles contribute to bacterial virulence and stress tolerance. Furthermore, we reveal differences in how beneficial and pathogenic bacterial species respond to harsh environmental conditions through vesicle packaging. Importantly, we find that protein cargo implicates outer-inner membrane vesicles in bacterial stress responses, while outer membrane vesicles are packaged for virulence.
Collapse
Affiliation(s)
- Hannah M. McMillan
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Meta J. Kuehn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
Lim HG, Rychel K, Sastry AV, Bentley GJ, Mueller J, Schindel HS, Larsen PE, Laible PD, Guss AM, Niu W, Johnson CW, Beckham GT, Feist AM, Palsson BO. Machine-learning from Pseudomonas putida KT2440 transcriptomes reveals its transcriptional regulatory network. Metab Eng 2022; 72:297-310. [PMID: 35489688 DOI: 10.1016/j.ymben.2022.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 11/17/2022]
Abstract
Bacterial gene expression is orchestrated by numerous transcription factors (TFs). Elucidating how gene expression is regulated is fundamental to understanding bacterial physiology and engineering it for practical use. In this study, a machine-learning approach was applied to uncover the genome-scale transcriptional regulatory network (TRN) in Pseudomonas putida KT2440, an important organism for bioproduction. We performed independent component analysis of a compendium of 321 high-quality gene expression profiles, which were previously published or newly generated in this study. We identified 84 groups of independently modulated genes (iModulons) that explain 75.7% of the total variance in the compendium. With these iModulons, we (i) expand our understanding of the regulatory functions of 39 iModulon associated TFs (e.g., HexR, Zur) by systematic comparison with 1993 previously reported TF-gene interactions; (ii) outline transcriptional changes after the transition from the exponential growth to stationary phases; (iii) capture group of genes required for utilizing diverse carbon sources and increased stationary response with slower growth rates; (iv) unveil multiple evolutionary strategies of transcriptome reallocation to achieve fast growth rates; and (v) define an osmotic stimulon, which includes the Type VI secretion system, as coordination of multiple iModulon activity changes. Taken together, this study provides the first quantitative genome-scale TRN for P. putida KT2440 and a basis for a comprehensive understanding of its complex transcriptome changes in a variety of physiological states.
Collapse
Affiliation(s)
- Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Gayle J Bentley
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Joshua Mueller
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588, USA
| | - Heidi S Schindel
- Biosciences Division, Oak Ridge National Laboratory, 5200 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Peter E Larsen
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60539, USA
| | - Philip D Laible
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL, 60539, USA
| | - Adam M Guss
- Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA; Biosciences Division, Oak Ridge National Laboratory, 5200 Bethel Valley Rd, Oak Ridge, TN, 37830, USA
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska-Lincoln, 1400 R St, Lincoln, NE, 68588, USA
| | - Christopher W Johnson
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA; Agile BioFoundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Emeryville, CA, 94720, USA
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA; Joint BioEnergy Institute, 5885 Hollis Street, 4th Floor, Emeryville, CA, 94608, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs, Lyngby, Denmark; Department of Pediatrics, University of California, San Diego, CA, 92093, USA.
| |
Collapse
|
3
|
Ducret V, Abdou M, Goncalves Milho C, Leoni S, Martin-Pelaud O, Sandoz A, Segovia Campos I, Tercier-Waeber ML, Valentini M, Perron K. Global Analysis of the Zinc Homeostasis Network in Pseudomonas aeruginosa and Its Gene Expression Dynamics. Front Microbiol 2021; 12:739988. [PMID: 34690984 PMCID: PMC8531726 DOI: 10.3389/fmicb.2021.739988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Melina Abdou
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Catarina Goncalves Milho
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Oriane Martin-Pelaud
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Antoine Sandoz
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Inés Segovia Campos
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | | | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|