1
|
Ismael M, Qayyum N, Gu Y, Na L, Haoyue H, Farooq M, Wang P, Zhong Q, Lü X. Functional Effects of Probiotic Lactiplantibacillus plantarum in Alleviation Multidrug-Resistant Escherichia coli-Associated Colitis in BALB/c Mice Model. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10356-7. [PMID: 39271561 DOI: 10.1007/s12602-024-10356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Multidrug-resistant Escherichia coli (MDR-E. coli) is a global health concern. Lactic acid bacteria (LAB) are important probiotics that have beneficial effects on health, and in recent years, their influences in preventing foodborne pathogens-induced colitis have attracted much attention. Therefore, this study aimed to investigate the oral administration of Lactiplantibacillus plantarum NWAFU-BIO-BS29 as an emerging approach to alleviate MDR-E. coli-induced colitis in BALB/c mice model. To illustrate the mode of action of NWAFU-BIO-BS29 interventions with the gut microbiota and immune responses, the changes on the colonic mucosal barrier, regulatory of the gene expressions of inflammatory cytokines, re-modulating the intestinal microflora, and changes in physiological parameters were studied. The results indicated that daily supplementation of 200 µL fresh bacteria for 7 days had ameliorated the associated colitis and partially prevented the infection. The modes of action by ameliorating the inflammatory response, which destructed villous and then affected the intestinal barrier integrity, reducing the secretion of interleukins (6 and β) and tumor necrosis factor (TNF-α) in serum by 87.88-89.93%, 30.73-35.98%, and 19.14-22.32%, respectively, enhancing the expressions of some epithelial integrity-related proteins in the mouse mucous layer of mucins 2 and 3, Claudin-1, and Occludin by 130.00-661.85%, 27.64-57.35%, 75.52-162.51%, and 139.36-177.73%, respectively, and 56.09-73.58% for toll-like receptor (TLR4) in colon tissues. Notably, the mouse gut microbiota analysis showed an increase in the relative abundance of beneficial bacteria, including Lactobacillus, Bacteriodales bacterium, Candidatus Saccharimonas, Enterorhabdus, and Bacilli. Furthermore, the probiotic promoted the proliferation of epithelia and goblet cells by increasing short-chain fatty acids (SCFAs) levels by 19.23-31.39%. In conclusion, L. plantarum NWAFU-BIO-BS29 has potential applications and can be considered a safe dietary supplement to ameliorate the colitis inflammation symptoms of MDR-E. coli infection.
Collapse
Affiliation(s)
- Mohamedelfatieh Ismael
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
- Sudanese Standards and Metrology Organization, Khartoum, 13573, Sudan
| | - Nageena Qayyum
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Yaxin Gu
- College of Food Science, China Agricultural University, Beijing, China
| | - Li Na
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Han Haoyue
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Muhammad Farooq
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Panpan Wang
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, 510642, China.
| | - Xin Lü
- Lab of Bioresource, College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Hwang SJ, Choi YJ, Wang JH, Son CG. Lactobacillus Casei-fermented Amomum Xanthioides Mitigates non-alcoholic fatty liver disease in a high-fat diet mice model. Biomed Pharmacother 2024; 172:116250. [PMID: 38320334 DOI: 10.1016/j.biopha.2024.116250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a substantial global health issue owing to its high prevalence and the lack of effective therapies. Fermentation of medicinal herbs has always been considered a feasible strategy for enhancing efficacy in treating various ailments. This study aimed to investigate the potential benefits of the Lactobacillus casei-fermented Amomum xanthioides (LAX) on NAFLD in a high-fat diet model. HFD-fed C57BL6/j mice were administered with 200 mg/kg of LAX or unfermented Amomum xanthioides (AX) or 100 mg/kg of metformin for 6 weeks from the 4th week. The 10-week HFD-induced alterations of hepatic lipid accumulation and hepatic inflammation were significantly attenuated by LAX dominantly (more than AX or metformin), which evidenced by pathohistological findings, lipid contents, inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)- 6 and IL-1β, oxidative parameters such as reactive oxygen species (ROS) and malondialdehyde (MDA), and molecular changes reversely between lipogenic proteins such as glycerol-3-phosphate acyltransferase (GPAM) and sterol regulatory element-binding protein (SREBP)- 1, and lipolytic proteins including peroxisome proliferator-activated receptor (PPAR-α) and AMP-activated kinase (AMPK)-α in the liver tissues. In addition, the abnormal serum lipid parameters (triglyceride, total cholesterol and LDL-cholesterol) notably ameliorated by LAX. In conclusion, these findings support the potential of LAX as a promising plant-derived remedy for NAFLD.
Collapse
Affiliation(s)
- Seung-Ju Hwang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea
| | - Yu-Jin Choi
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Department of Internal Medicine, College of Korean Medicine, Se-Myung University, Semyeong-ro 65, Jecheon-si, Chungcheongbuk-do, 27136, the Republic of Korea
| | - Jing-Hua Wang
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| | - Chang-Gue Son
- Institute of Bioscience & Integrative Medicine, Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea; Liver and Immunology Research Center, Daejeon Oriental Hospital of Daejeon University, 75, Daedukdae-ro 176 bun-gil, Seo-gu, Daejeon 35235, the Republic of Korea.
| |
Collapse
|
3
|
Netto de Oliveira da Cunha C, Rodeghiero Collares S, Carvalho Rodrigues D, Walcher DL, Quintana de Moura M, Rodrigues Martins LH, Baracy Klafke G, de Oliveira Arias JL, Carapelli R, do Santos Espinelli Junior JB, Scaini CJ, Farias da Costa de Avila L. The larvicidal effect of the supernatant of Lactobacillus acidophilus ATCC 4356 on Toxocara canis. Exp Parasitol 2024; 258:108720. [PMID: 38367945 DOI: 10.1016/j.exppara.2024.108720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/19/2024]
Abstract
Human toxocariasis is a parasitic anthropozoonosis that is difficult to treat and control. A previous study carried out with Lactobacillus acidophilus ATCC 4356 revealed that the cell free supernatant (CFS) of this probiotic killed 100% of Toxocara canis larvae in vitro. The present study aimed to investigate the characteristics of the CFS of L. acidophilus ATCC 4356, which may be involved in its larvicidal effects on T. canis. L. acidophilus ATCC 4356 was cultured, and lactic and acetic acids present in the CFS were quantified by high performance liquid chromatography (HPLC). The levels of pH and H2O2 were also analyzed. To assess the larvicidal effect of the CFS, this was tested pure and diluted (1:2 to 1:128) on T. canis larvae. High concentrations of lactic and acetic acids were detected in the CFS. The acidity of the pure CFS was observed at pH 3.8, remaining acidic at dilutions of 1:2 to 1:16. Regarding the in vitro larvicidal effect, 100% death of T. canis larvae was observed using the pure CFS and 1:2 dilution. Based on these results, it can be inferred that the presence of higher concentrations of organic acids and low pH of the medium contributed to the larvicidal activity of the CFS of L. acidophilus ATCC 4356. In addition, the maintenance of the larvicidal effect, even after dilution, suggests a greater chance of the larvicidal effect of this CFS against T. canis in vivo.
Collapse
Affiliation(s)
- Carolina Netto de Oliveira da Cunha
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil.
| | | | - Débora Carvalho Rodrigues
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Débora Liliane Walcher
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Micaele Quintana de Moura
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Lourdes Helena Rodrigues Martins
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Gabriel Baracy Klafke
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Jean Lucas de Oliveira Arias
- Integrated Analysis Center, School of Chemistry and Food, Federal University of Rio Grande, Av. Italia, Km 6 - Campus Carreiros, CEP 96203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Rodolfo Carapelli
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - João Batista do Santos Espinelli Junior
- School of Chemistry and Food, Federal University of Rio Grande, Avenida Itália, Km 08 - Campus Carreiros, CEP 96.203-900, Rio Grande, Rio Grande do Sul, Brazil
| | - Carlos James Scaini
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| | - Luciana Farias da Costa de Avila
- Faculty of Medicine (FAMED)/Parasitology Laboratory, Federal University of Rio Grande, General Osório, S/N, CEP 96200-190, Rio Grande, RS, Brazil
| |
Collapse
|
4
|
Wu Y, Zhang X, Liu X, Li Y, Han D, Pi Y, Whitmore MA, Lu X, Zhang G, Zheng J, Wang J. Strain specificity of lactobacilli with promoted colonization by galactooligosaccharides administration in protecting intestinal barriers during Salmonella infection. J Adv Res 2024; 56:1-14. [PMID: 36894120 PMCID: PMC10834803 DOI: 10.1016/j.jare.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
INTRODUCTION Galactooligosaccharides (GOS) are lactogenic prebiotics that exert health benefits by stimulating the growth of different Lactobacillus strains in the gastrointestinal (GI) tract. OBJECTIVES This study aimed to investigate the mechanism of action of different GOS-enriched lactobacilli in intestinal health. METHODS Piglets and mice were supplemented with GOS to identify specific enrichment of Lactobacillus. The protective effects of individual GOS-enriched lactobacilli were investigated in Salmonella-infected mice. Macrophage depletion and transcriptome analysis were further performed to assess the involvement of macrophages and the underlying mechanisms of individual lactobacilli. An in vitro cell co-culture system was also used to evaluate the anti-adhesive and anti-invasive activities of lactobacilli against Salmonella in epithelial cells. RESULTS GOS markedly increased the relative abundance of three lactobacilli including L. delbrueckii, L. johnsonii, and L. reuteri in both piglets and mice. Supplementation with GOS further alleviated Salmonella infection in mice. L. delbrueckii (ATCC®BAA 365™), but not L. johnsonii or L. reuteri, enhanced propionate production in the intestinal tract and ameliorated Salmonella-induced intestinal inflammation and barrier dysfunction by suppressing the JAK2-STAT3 signaling and M1 macrophage polarization. L. johnsonii (BNCC 186110), on the other hand, inhibited Salmonella adhesion and invasion of epithelial cells through competitive exclusion. However, L. reuteri (BNCC 186135) failed to protect mice against Salmonella infection. CONCLUSION GOS-enriched lactobacilli show a differential role in protecting against Salmonella-induced intestinal barrier dysfunction and inflammation. Our results provide novel insights into the mechanism of action of GOS and individual Lactobacillus strains in the control and prevention of intestinal inflammatory disorders.
Collapse
Affiliation(s)
- Yujun Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiangyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaoyi Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yu Pi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Melanie A Whitmore
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junjun Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
5
|
Aditya A, Tabashsum Z, Martinez ZA, Biswas D. Effects of Metabolites of Lactobacillus casei on Expression and Neutralization of Shiga Toxin by Enterohemorrhagic Escherichia coli. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10212-8. [PMID: 38224447 DOI: 10.1007/s12602-024-10212-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Shiga toxin (stx), produced by enterohemorrhagic Escherichia coli (EHEC) or Shigella, causes hemolytic uremic syndrome (HUS) in humans. EHEC-mediated illnesses are recommended to treat by immune supportive strategies, instead of antibiotic therapy. Widely used probiotic Lactobacillus casei produces many bioactive metabolites, i.e., conjugated linoleic acids (CLAs) which have potential to educate host immunity and control EHEC growth and expression of its virulence genes. In this study, it was found that total metabolites of L. casei exerted a protective effect on Gb3 receptor containing mammalian cells against stx exposure.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA
| | | | - Debabrata Biswas
- Department of Animal Sciences, University of Maryland, College Park, MD, 20742, USA.
- Biological Sciences Program, University of Maryland, College Park, MD, 20742, USA.
- Centre for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
6
|
Fathy SS, Awad EI, Abd-El Aal SFA, Abdelfatah EN, Tahoun ABMB. Inhibitory effect of some probiotic strains and essential oils on the growth of some foodborne pathogens. Open Vet J 2024; 14:470-480. [PMID: 38633175 PMCID: PMC11018446 DOI: 10.5455/ovj.2024.v14.i1.43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/15/2023] [Indexed: 04/19/2024] Open
Abstract
Background Bacillus cereus and Yersinia enterocolitica are implicated in foodborne diseases that have major effects on human health; therefore, it is considered universal public health disorders. Essential oils and essential oils nano emulsions have a sufficient antibacterial performance against a variety of bacteria, especially multi-drug resistant bacteria. Probiotics showed several health benefits via moderating the GIT microbiota and their metabolites. Aim The study was designed to evaluate the biocontrol ability of cinnamon essential oil (CEO) nano emulsion and probiotics as natural antibacterial additives and reveal their bactericidal mechanism. Methods 250 random samples (50 raw milk, 50 rice pudding, 50 kariesh cheese, 50 yogurt, and 50 ice cream) were purchased separately from different areas in Mansoura city, Egypt, and exposed to bacteriological analysis. Results Bacillus cereus was found with the highest mean value of 66 × 107 ± 1.3 × 108 CFU/g in raw milk and the lowest mean value of 28 × 107 ± 2.6 × 107 CFU/g in kariesh cheese while Y. enterocolitica was found in 64% of the total inspected samples with the highest incidence (84%) in yogurt. The toxinogenic potential of the tested pathogens has been evaluated by multiplex PCR pointing nhe A and ces genes for B. cereus isolates while targeting in Y. enterocolitica 16s rRNA, and YST gene. Different concentrations (0.17%, 0.25%, 0.5%, 0.8%, 1%, 1.5%, and 2%) of cinnamon oil nano emulsion were employed in this study. CEO nano emulsion had the highest reduction rate at a concentration of 1.5% in the case of B. cereus and 2% in the case of Y. enterocolitica. Among different types of probiotics, the best one which showed inhibitory potential against B. cereus and Y. enterocolitica was L. plantarum. Conclusion Lactobacillus plantarum and CEO nano emulsion at a concentration of 2% have the highest reduction rate against Y. enterocolitica, while L. plantarum and CEO nano emulsion at a concentration of 1.5% has the best antibacterial effect against B. cereus. In conclusion, more attention is required for both safety and quality in dairy products through the application of natural additives such as essential oils and probiotics.
Collapse
Affiliation(s)
- Sally S. Fathy
- Directorate of Veterinary Medicine in Dakahlia, Ministry of Agriculture, Egypt
| | - Esmat I. Awad
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Salah F. A. Abd-El Aal
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Eman N. Abdelfatah
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| | - Asmaa B. M. B. Tahoun
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, Egypt
| |
Collapse
|
7
|
Rocha-Ramírez LM, Hernández-Chiñas U, Moreno-Guerrero SS, Ramírez-Pacheco A, Eslava CA. In Vitro Effect of the Cell-Free Supernatant of the Lactobacillus casei Strain IMAU60214 against the Different Pathogenic Properties of Diarrheagenic Escherichia coli. Microorganisms 2023; 11:1324. [PMID: 37317298 DOI: 10.3390/microorganisms11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) and enterohemorrhagic E. coli (EHEC) are E. coli pathotypes associated with unmanageable diarrhea in children and adults. An alternative to the treatment of infections caused by these microorganisms is the use of the bacteria of the Lactobacillus genus; however, the beneficial effects on the intestinal mucosa are specific to the strain and species. The interest of this study consisted of analyzing the coaggregation properties of Lactobacillus casei IMAU60214, as well as the effect of cell-free supernatant (CSF) on growth and anti-cytotoxic activity in a cell model of the human intestinal epithelium for an agar diffusion assay (HT-29) and the inhibition of biofilm formation on plates of DEC strains of the EAEC and EHEC pathotypes. The results showed that L. casei IMAU60214 exhibits time-dependent coaggregation (35-40%) against EAEC and EHEC that is similar to the control E. coli ATCC 25922. The CSF showed antimicrobial activity (20-80%) against EAEC and EHEC depending on the concentration. In addition, the formation and dispersion of biofilms of the same strains decrease, and the proteolytic pre-treatment with catalase and/or proteinase K (1 mg/mL) of CSF reduces the antimicrobial effect. When evaluating the effect in HT-29 cells pre-treated with CFS on the toxic activity induced by the EAEC and EHEC strains, a reduction of between 30 and 40% was observed. The results show that L. casei IMAU60214 and its CSF have properties that interfere with some properties associated with the virulence of the EAEC and EHEC strains that cause intestinal infection, which supports their use for the control and prevention of infections caused by these bacteria.
Collapse
Affiliation(s)
- Luz María Rocha-Ramírez
- Unidad de Investigación en Enfermedades Infecciosas, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Ulises Hernández-Chiñas
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
- Departamento de Salud Pública, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Silvia Selene Moreno-Guerrero
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez. Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Arturo Ramírez-Pacheco
- Departamento de Hemato-Oncología, Hospital Infantil de México Federico Gómez. Dr. Márquez No. 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
| | - Carlos A Eslava
- Unidad Periférica de Investigación Básica y Clínica en Enfermedades Infecciosas, Universidad Nacional Autónoma de México, Dr. Márquez 162, Col. Doctores, Alcaldía Cuauhtémoc, Ciudad de México 06720, Mexico
- Departamento de Salud Pública, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
8
|
Aditya A, Tabashsum Z, Alvarado Martinez Z, Wei Tung C, Suh G, Nguyen P, Biswas D. Diarrheagenic Escherichia coli and Their Antibiotic Resistance Patterns in Dairy Farms and Their Microbial Ecosystems. J Food Prot 2023; 86:100051. [PMID: 36916558 DOI: 10.1016/j.jfp.2023.100051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
Ruminants are the largest reservoir for all types of Escherichia coli, including the pathogenic ones, which can potentially be transmitted to humans via the food chain and environment. A longitudinal study was performed to estimate the prevalence and antibiotic-resistant pattern of pathogenic E. coli (pE.coli) strains in dairy farm environments. A total of 846 environmental samples (water, lagoon slurry, bedding, feed, feces, soil, and compost) were collected in summer over two years from five dairy farms in Maryland, USA. An additional 40 soil samples were collected in winter and summer seasons for evaluating microbiome composition. Collected environmental samples were screened for the presence of pE.coli, which was isolated using a selective culture medium, for later confirmation and virotyping using PCR with specific primers. The overall prevalence of pE.coli in dairy farms was 8.93% (71/846), with the most common virotype identified in isolates being ETEC, followed by STEC. The highest pE.coli prevalence were recorded in lagoon slurry (21.57%) while the lowest was in compost heap (2.99%). Among isolates, 95.87% of the virotypes were resistant to 9 classes of antibiotics whereas only 4.12% were sensitive. The highest proportion (68.04%) of resistance was found for quinolones (e.g., ciprofloxacin). The resulting metagenomic analysis at the phylum and genus levels of the grazing land soil suggests that climatic conditions actively influence the abundance of bacteria. Proteobacteria, which contains many Gram-negative foodborne pathogens (including pE.coli), was the most predominant phylum, accounting for 26.70% and 24.93% of soil bacteria in summer and winter, respectively. In addition to relative abundance, there was no significant difference in species diversity between seasons when calculated via Simpson (D) and Shannon (H) index. This study suggests that antibiotic-resistant E. coli virotypes are present in the dairy farm environment, and proper steps are warranted to control its transmission irrespective of seasonality.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Zajeba Tabashsum
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | | | - Chuan Wei Tung
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Grace Suh
- Biological Sciences Program, University of Maryland, College Park, MD 20742, USA
| | - Phuong Nguyen
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA; Biological Sciences Program, University of Maryland, College Park, MD 20742, USA; Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
9
|
Geng S, Zhang T, Gao J, Li X, Chitrakar B, Mao K, Sang Y. In vitro screening of synbiotics composed of Lactobacillus paracasei VL8 and various prebiotics and mechanism to inhibits the growth of Salmonella Typhimurium. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
10
|
Saboori B, Shahidi F, Hedayati S, Javadmanesh A. Investigating the Probiotic Properties and Antimicrobial Activity of Lactic Acid Bacteria Isolated from an Iranian Fermented Dairy Product, Kashk. Foods 2022; 11:foods11233904. [PMID: 36496711 PMCID: PMC9739453 DOI: 10.3390/foods11233904] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/20/2022] [Accepted: 11/28/2022] [Indexed: 12/09/2022] Open
Abstract
In the present study, kashk samples were collected from two regions of Iran, the Fars (Abadeh) and Razavi Khorasan (Kalat) provinces. Fifteen bacteria were isolated and physiological and biochemical assays were performed. After identification to the genus level, eight isolates were identified as lactic acid bacteria (LAB) and subjected to molecular identification and probiotic properties assays. The results revealed that the isolates were Enterococcus faecium KKP 3772 (KF1), Enterococcus faecium C1 (KF2), Pediococcus pentosaceus H11 (KF3), Pediococcus pentosaceus VNK-1 (KK4), Lactococcus lactis RSg (KK1), Enterococcus faecalis P190052 (KK2), Enterococcus mundtii CECT972T (KK3), and Lactiplantibacillus plantarum PM411 (KK5). Only the numbers of L. lactis RSg (KK1) and Lpb. Plantarum PM411 (KK5) decreased to below 9 Log CFU/mL after acidic conditions (pH = 3) and showed weak antibacterial activity. Enterococcus mundtii CECT972T (KK3) and E. faecium C1(KF2) were highly susceptible to bile salts, while P. pentosaceus VNK-1 (KK4) and P. pentosaceus H11 (KF3) showed the highest resistance. All of the isolates were resistant to tetracycline and sensitive to chloramphenicol and gentamicin. The antimicrobial activity of P. pentosaceus VNK-1 (KK4) and P. pentosaceus H11 (KF3) was higher than other isolates and consequently, their inhibition zones were larger. The adhesion capabilities of LAB isolates to intestinal epithelial cells were evaluated by examining the auto-aggregation factor and cell surface hydrophobicity. The highest and lowest cell surface hydrophobicity and auto-aggregation were obtained from P. pentosaceus VNK-1 (KK4) and E. mundtii CECT972T (KK3), respectively. In general, P. pentosaceus VNK-1 (KK4) and P. pentosaceus H11 (KF3) have shown better probiotic properties as compared to other isolates.
Collapse
Affiliation(s)
- Bahareh Saboori
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran
- Correspondence: (F.S.); (S.H.)
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 7193635899, Iran
- Correspondence: (F.S.); (S.H.)
| | - Ali Javadmanesh
- Department of Animal Science, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad 9177948978, Iran
| |
Collapse
|
11
|
Aditya A, Rahaman SO, Biswas D. Impact of Lactobacillus-originated metabolites on enterohemorrhagic E. coli in rumen fluid. FEMS Microbiol Ecol 2022; 98:6795928. [PMID: 36331030 DOI: 10.1093/femsec/fiac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 10/17/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Rumen is one of the richest microbial ecosystems naturally harboring many zoonotic pathogens. Controlling the colonization of cattle originated zoonotic pathogens in rumen, particularly enterohemorrhagic Escherichia coli (EHEC), is critical in reducing foodborne enteric diseases in humans. In this study, we aimed to inhibit the growth of EHEC in a simulated rumen system with collected rumen fluids (RFs) using live probiotics, synbiotics, and their metabolites. EHEC inoculated RF was treated with live wild type Lactobacillus casei (LCwt), LCwt with 0.5% peanut flour (LCwt+PF), an engineered LC capable of overexpressing linoleate isomerase (LCCLA), and their metabolites collected in cell-free culture supernatants (CFCSwt, CFCSwt+PF, and CFCSCLA) at various time points. A growth stimulatory effect toward Lactobacillus spp. was exerted by all CFCS, while the EHEC was suppressed. Among other treatments only LCwt+PF reduced EHEC by 2.68 logs after 72 h. This observation was also supported by metataxonomic analysis. A reduction in Bacteroidetes and Proteobacteria while increase in Firmicutes was observed at 48 h by the presence of CFCSs as compared to the control. Our observation implies probiotic-originated metabolites modulate rumen microbiota positively which can be deployed to control the transmission of cattle-borne pathogens specifically EHEC.
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States
| | - Shaik O Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, United States
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, United States.,Biological Sciences Program, University of Maryland, College Park, MD 20742, United States.,Centre for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
12
|
Aditya A, Li Y, Biswas D. Antagonistic Effects of Conjugated Linoleic Acids of Lactobacillus casei against Foodborne Enterohemorrhagic Escherichia coli. J Food Prot 2022; 85:712-719. [PMID: 35113991 DOI: 10.4315/jfp-21-414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/01/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Probiotics in fermented foods or commercially available supplements benefit the host by providing metabolites and peptides. The production of these metabolites varies with the available substrates or prebiotics present in the system and their concentration. In this study, 0.5% peanut flour (PF) was used to stimulate the growth and production of metabolites of wild-type Lactobacillus casei (LCwt) and compare with an engineered L. casei (LCCLA) capable of converting a higher amount of conjugated linoleic acid (CLA). The total extracellular metabolites present in the cell-free cultural supernatant (CFCS) of LCwt (without peanut), LCwt+PF (with peanut), and LCCLA were collected after 24 and 48 h of incubation, and their antagonistic activities against enterohemorrhagic Escherichia coli (EHEC EDL933) growth and pathogenesis were evaluated. All collected metabolites exhibited varying efficiency in restraining EHEC EDL933 growth, whereas supplementing a low concentration of CLA to the 48-h CFCS from LCwt showed augmented antagonism toward EHEC EDL933. A downregulation of key virulence genes was observed from metabolites collected at the 48-h time point. These observations indicate that the presence of metabolites in CFCSs-including CLA, which is produced by Lactobacillus and was identified by gas chromatography-mass spectrometry-plays a critical role. This study demonstrates the potential applicability of Lactobacillus-originated CLA in the prevention of EHEC EDL933-mediated illnesses. HIGHLIGHTS
Collapse
Affiliation(s)
- Arpita Aditya
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | - Yue Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA.,Biological Sciences Program, University of Maryland, College Park, Maryland 20742, USA.,Centre for Food Safety and Security Systems, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
13
|
Tarracchini C, Viglioli M, Lugli GA, Mancabelli L, Fontana F, Alessandri G, Turroni F, Ventura M, Milani C. The Integrated Probiotic Database: a genomic compendium of bifidobacterial health-promoting strains. MICROBIOME RESEARCH REPORTS 2022; 1:9. [PMID: 38045645 PMCID: PMC10688828 DOI: 10.20517/mrr.2021.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 12/05/2023]
Abstract
Background: The World Health Organization defines probiotics as "live microorganisms, which when administered in adequate amounts confer a health benefit on the host". In this framework, probiotic strains should be regarded as safe for human and animal consumption, i.e., they should possess the GRAS (generally recognized as safe) status, notified by the local authorities. Consistently, strains of selected Bifidobacterium species are extensively used as probiotic agents to prevent and ameliorate a broad spectrum of human and/or animal gastrointestinal disorders. Even though probiotic properties are often genus- or species-associated, strain-level differences in the genetic features conferring individual probiotic properties to commercialized bifidobacterial strains have not been investigated in detail. Methods: In this study, we built a genomic database named Integrated Probiotic DataBase (IPDB), whose first iteration consists of common bifidobacterial strains used in probiotic products for which public genome sequences were available, such as members of B. longum subsp. longum, B. longum subsp. infantis, B. bifidum, B. breve, and B. animalis subsp. lactis taxa. Furthermore, the IPDB was exploited to perform comparative genome analyses focused on genetic factors conferring structural, functional, and chemical features predicted to be involved in microbe-host and microbe-microbe interactions. Results and conclusion: Our analyses revealed strain-level genetic differences, underlining the importance of inspecting the strain-specific and outcome-specific efficacy of probiotics. In this context, IPDB represents a valuable resource for obtaining genetic information of well-established bifidobacterial probiotic strains.
Collapse
Affiliation(s)
- Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Martina Viglioli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- GenProbio Srl, Via delle Scienze, 11/A, Parma 43100, Italy
| | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
- Microbiome Research Hub, University of Parma, Parco Area delle Scienze 11a, Parma 43124, Italy
| |
Collapse
|
14
|
Meza-Gutiérrez NN, Magallón-Servín P, Balois-Morales R, Pérez-Ramírez IF, López-Guzmán GG, Berumen-Varela G, Bautista-Rosales PU. Growth Promoting Activity of Annona muricata L. Leaf Extracts on Lactobacillus casei. PLANTS (BASEL, SWITZERLAND) 2022; 11:581. [PMID: 35270049 PMCID: PMC8912565 DOI: 10.3390/plants11050581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Soursop leaves are a source of phytochemical compounds, such as phenolic acids, flavonoids, hydrolyzable tannins, and acetogenins. These compounds can have several types of biological activities. Lactic acid bacteria can uptake phenolic compounds present in plants or fruits. The aim of the present work was to investigate the in vitro effect of hexane, acetone, methanolic, and aqueous extracts of soursop leaves (Annona muricata L.) on the growth, motility, and biofilm formation of Lactobacillus casei, and to determine compounds related to growth. The minimum concentration promoting growth, motility (swimming, swarming, and twitching), and biofilm-forming capacity (crystal violet) were evaluated. The results showed the growth-promoting capacity of acetone and aqueous extracts at low doses 25-50 mg/L, and an inhibition in the four extracts at higher doses of 100 mg/L. The L. casei growth is related to ellagic acid, quercetin rhamnoside, kaempferol dihexoside, quercetin hexoside, secoisolariciresinol, and kaempferol hexoside-rhamnoside. Hexane extract increased the three types of motility, while aqueous maintained swimming and twitching motility similar to control. The four extracts inhibited the biofilm formation capacity.
Collapse
Affiliation(s)
- Nimcy Noemí Meza-Gutiérrez
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Paola Magallón-Servín
- Centro de Investigaciones Biológicas del Noroeste, Km 1 Carretera a San Juan de La Costa “El Comitan”, La Paz C.P. 23205, Baja California Sur, Mexico;
- Bashan Institure of Sciences, 1730 Post Oak Ct, Auburn, AL 36830, USA
| | - Rosendo Balois-Morales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Iza Fernanda Pérez-Ramírez
- Facultad de Química, Universidad Autónoma de Querétaro, C.U., Cerro de las Campanas S/N, Querétaro C.P. 76010, Querétaro, Mexico;
| | - Graciela Guadalupe López-Guzmán
- Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63780, Nayarit, Mexico;
| | - Guillermo Berumen-Varela
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| | - Pedro Ulises Bautista-Rosales
- Programa de Doctorado en Ciencias Biológico Agropecuarias, Universidad Autónoma de Nayarit, Km 9 Carretera Tepic-Compostela, Xalisco C.P. 63180, Nayarit, Mexico; (N.N.M.-G.); (R.B.-M.)
- Unidad de Tecnología de Alimentos, Secretaría de Investigación y Posgrado, Universidad Autónoma de Nayarit, Ciudad de la Cultura S/N, Colonia Centro, Tepic C.P. 63000, Nayarit, Mexico;
| |
Collapse
|
15
|
Chi T, Zhao Q, Wang P. Fecal 16S rRNA Gene Sequencing Analysis of Changes in the Gut Microbiota of Rats with Low-Dose Aspirin-Related Intestinal Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8848686. [PMID: 33954200 PMCID: PMC8060078 DOI: 10.1155/2021/8848686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 02/06/2021] [Accepted: 02/13/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND The incidence of small intestinal injury caused by low-dose aspirin (LDA) is high, but the pathogenesis and intervention measures of it have not been elucidated. Recent studies have found gut microbiota to be closely associated with onset and development of NSAID-induced intestinal injury. However, studies of the changes in the gut microbiota of rats with LDA-related intestinal injury have been lacking recently. In this study, we investigated fecal 16S rRNA gene sequencing analysis of changes in the gut microbiota of rats with LDA-related intestinal injury. METHODS Sprague-Dawley (SD) rat models of small intestinal injury were established by intragastric administration of LDA. The small intestinal tissues and the fecal samples were harvested. The fecal samples were then analyzed using high-throughput sequencing of 16S rRNA V3-V4 amplicons. The gut microbiota composition and diversity were analyzed and compared using principal coordinate analysis (PCoA), nonmetric multidimensional scaling (NMDS) analysis, the unweighted pair-group method with arithmetic mean (UPGMA) clustering analysis, multivariate statistical analysis (ANOSIM, MetaStats, and LEfSe), and spatial statistics. RESULTS The LDA rat model was successfully established. Decreased Firmicutes and increased Bacteroidetes abundances in rats with LDA-induced small intestinal injury were revealed. MetaStats analysis between the before administration of LDA (CG) and after administration of LDA (APC) groups showed that the intestinal floras exhibiting significant differences (P < 0.05, q < 0.1) were Firmicutes, Bacteroides, Cyanobacteria, Melainabacteria, Coriobacteriia, Bacteroidia, Bacteroidales, Eubacteriaceae, and Streptococcaceae. In addition, the bacterial taxa showing significant differences between the control (NS) and APC groups were Firmicutes, Bacteroides, Verrucomicrobiaceae and Peptococcaceae. CONCLUSIONS The alterations in the gut microbiota composition and diversity of rats with LDA-related intestinal injury were found in the present study. The change of gut microbiota in LDA-related intestinal injury will lay the foundation for further research on the function and signaling pathways of the intestinal flora and promote the use of intestinal flora as drug targets to treat LDA-induced small intestinal injury.
Collapse
Affiliation(s)
- Tianyu Chi
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Quchuan Zhao
- Departments of Gastroenterology, Xuanwu Hospital Capital Medical University, Beijing, China
| | - Peili Wang
- Cardiovascular Center, Xi Yuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|