1
|
Xie G, Hu Q, Cao X, Wu W, Dai P, Guo W, Wang O, Wei L, Ren R, Li Y. Clinical identification and microbiota analysis of Chlamydia psittaci- and Chlamydia abortus- pneumonia by metagenomic next-generation sequencing. Front Cell Infect Microbiol 2023; 13:1157540. [PMID: 37434780 PMCID: PMC10331293 DOI: 10.3389/fcimb.2023.1157540] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 07/13/2023] Open
Abstract
Introduction Recently, the incidence of chlamydial pneumonia caused by rare pathogens such as C. psittaci or C. abortus has shown a significant upward trend. The non-specific clinical manifestations and the limitations of traditional pathogen identification methods determine that chlamydial pneumonia is likely to be poorly diagnosed or even misdiagnosed, and may further result in delayed treatment or unnecessary antibiotic use. mNGS's non-preference and high sensitivity give us the opportunity to obtain more sensitive detection results than traditional methods for rare pathogens such as C. psittaci or C. abortus. Methods In the present study, we investigated both the pathogenic profile characteristics and the lower respiratory tract microbiota of pneumonia patients with different chlamydial infection patterns using mNGS. Results More co-infecting pathogens were found to be detectable in clinical samples from patients infected with C. psittaci compared to C. abortus, suggesting that patients infected with C. psittaci may have a higher risk of mixed infection, which in turn leads to more severe clinical symptoms and a longer disease course cycle. Further, we also used mNGS data to analyze for the first time the characteristic differences in the lower respiratory tract microbiota of patients with and without chlamydial pneumonia, the impact of the pattern of Chlamydia infection on the lower respiratory tract microbiota, and the clinical relevance of these characteristics. Significantly different profiles of lower respiratory tract microbiota and microecological diversity were found among different clinical subgroups, and in particular, mixed infections with C. psittaci and C. abortus resulted in lower lung microbiota diversity, suggesting that chlamydial infections shape the unique lung microbiota pathology, while mixed infections with different Chlamydia may have important effects on the composition and diversity of the lung microbiota. Discussion The present study provides possible evidences supporting the close correlation between chlamydial infection, altered microbial diversity in patients' lungs and clinical parameters associated with infection or inflammation in patients, which also provides a new research direction to better understand the pathogenic mechanisms of pulmonary infections caused by Chlamydia.
Collapse
Affiliation(s)
- Gongxun Xie
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Qing Hu
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Xuefang Cao
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Wenjie Wu
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Penghui Dai
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Wei Guo
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Ouxi Wang
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Liang Wei
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
| | - Ruotong Ren
- Institute of Innovative Applications, MatriDx Biotechnology Co., Ltd, Hangzhou, Zhejiang, China
- Foshan Branch, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanchun Li
- Department of Pathology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
2
|
Huang Y, Li S, He S, Li Y, He Q, Wu Y. Chlamydia psittaci inclusion membrane protein CPSIT_0842 induces macrophage apoptosis through MAPK/ERK-mediated autophagy. Int J Biochem Cell Biol 2023; 157:106376. [PMID: 36716815 DOI: 10.1016/j.biocel.2023.106376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 01/29/2023]
Abstract
Chlamydia psittaci is a multi-host zoonotic pathogen, which mainly infects poultry and inflicts an appreciable economic burden on the livestock farming industry. C. psittaci inclusion membrane proteins are uniquely positioned at the host-pathogen interface and are important virulence proteins. We have previously confirmed that Incs regulate host cell survival to help Chlamydia sp. evade host-cell-mediated defense mechanisms. However, the role of the Inc, CPSIT_0842, in the regulation of cell death following the establishment of persistent C. psittaci infection remains unknown. This study explored the effect of CPSIT_0842 on the crosstalk between the autophagic and apoptotic pathways in macrophages. Results showed that CPSIT_0842 initiated autophagy and blocked autophagic flux in human macrophages, as indicated by autophagy-related protein LC3-II, Beclin-1, and p62 upregulation, autophagosome accumulation, and lysosomal protein LAMP1 diminution. We also showed that the disruption of autophagic flux had a regulatory effect on CPSIT_0842-induced apoptosis. Moreover, the suppression of autophagy initiation by 3-methyladenine attenuated CPSIT_0842-induced apoptosis. By contrast, the induction of autophagic flux by rapamycin did not significantly affect CPSIT_0842-induced apoptosis. Taken together, these findings demonstrate that CPSIT_0842 induced macrophage apoptosis by initiating incomplete autophagy through the MAPK/ERK/mTOR signaling pathway, which may be instrumental to the ability of C. psittaci to evade the host innate immune response and establish persistent infection. The improved understanding of the autophagic and cell death pathways triggered upon bacterial inclusion will likely help in the development of novel treatment strategies for chlamydia infection.
Collapse
Affiliation(s)
- Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Sijia Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Siqin He
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China; Department of Clinical Laboratory, The First Affiliated Hospital of University of South China, Hengyang 421000, Hunan, China
| | - Qingzhi He
- School of Biotechnology, Guilin Medical University, Guilin 541199, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
3
|
Xiao J, He J, He Z, Wang C, Li Y, Yan X, Chen Y, Sun Z, Liu J, Liang M, Wu Y. Chlamydia psittaci hypothetical inclusion membrane protein CPSIT_0842 evokes a pro-inflammatory response in monocytes via TLR2/TLR4 signaling pathways. Vet Microbiol 2023; 280:109693. [PMID: 36889151 DOI: 10.1016/j.vetmic.2023.109693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 02/05/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Chlamydia psittaci (C. psittaci) is an obligate intracellular pathogen that resides within a membrane-bound compartment known as the inclusion. Upon entering the host cell, Chlamydiae secrete numerous proteins to modify the inclusion membrane. Inclusion membrane (Inc) proteins are important pathogenic factors in Chlamydia and play crucial roles in the growth and development of Chlamydia. In the present study, the C. psittaci protein, CPSIT_0842, was identified and shown to localize to the inclusion membrane. Temporal analysis revealed that CPSIT_0842 is an early expression protein of Chlamydia. Moreover, this protein was shown to induce the expression of pro-inflammatory cytokines IL-6 and IL-8 in human monocytes (THP-1 cells) via the TLR2/TLR4 signaling pathway. CPSIT_0842 increases the expression of TLR2, TLR4, and adaptor MyD88. Suppression of TLR2, TLR4, and MyD88 markedly attenuated CPSIT_0842-induced production of IL-6 and IL-8. MAP kinases and NF-κB, important downstream molecules of TLR receptors in inflammatory signaling pathways, were also confirmed to be activated by CPSIT_0842. CPSIT_0842-induced production of IL-6 was reliant on activation of the ERK, p38, and NF-κB signaling pathways while IL-8 expression was regulated by the ERK, JNK, and NF-κB signaling pathways. Specific inhibitors of these signaling pathways significantly decreased CPSIT_0842-mediated expression of IL-6 and IL-8. Together these findings demonstrate that CPSIT_0842 upregulates the expression of IL-6 and IL-8 via TLR-2/TLR4-mediated MAPK and NF-κB signaling pathways in THP-1 cells. Exploring these molecular mechanisms enhances our understanding of C. psittaci pathogenesis.
Collapse
Affiliation(s)
- Jian Xiao
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Jun He
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Yumeng Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Xiaoliang Yan
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Yuqing Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Zhenjie Sun
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China
| | - Jian Liu
- The Affiliated Nanhua Hospital, Department of laboratory medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Mingxing Liang
- The Affiliated Huaihua Hospital, Department of laboratory medicine, Huaihua, Hunan, 418000, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hengyang, Hunan, 421001, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Xaplanteri P, Rodis N, Potsios C. Virulence Factors of Chlamydia Spp. Involving Human Infections. Infect Dis (Lond) 2023. [DOI: 10.5772/intechopen.109742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Chlamydia spp. are the culprit of many human infections with severe complications, especially involving human eye, reproductive system, and lungs. The scope of the project is to delineate the virulence factors of the bacterium that facilitate invasion in human tissues, their mechanism of action, the ability to hide from immune system and the complications of infection. Chlamydia spp. are obligate intracellular pathogens that in their evolution, they use multiple mechanisms to enter host cell, to form the inclusion body, and to promote intracellular replication and survival. The T3SS effectors, the inclusion membrane proteins (Incs), are not only structural components of the membrane but also interfere with the host cell pathways. They also have an atypical mechanism of cell division. Description of the mechanisms of pathogenicity may lead to the development of new ways to face this major pathogen.
Collapse
|
5
|
He S, Wang C, Huang Y, Lu S, Li W, Ding N, Chen C, Wu Y. Chlamydia psittaci plasmid-encoded CPSIT_P7 induces macrophage polarization to enhance the antibacterial response through TLR4-mediated MAPK and NF-κB pathways. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119324. [PMID: 35809864 DOI: 10.1016/j.bbamcr.2022.119324] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Although the protective effects of Chlamydia psittaci plasmid-encoded protein CPSIT_P7 as vaccine antigens to against chlamydial infection have been confirmed in our previous study, the function and mechanism of CPSIT_P7 inducing innate immunity in the antibacterial response remain unknown. Here, we found that plasmid protein CPSIT_P7 could induce M1 macrophage polarization upregulating the genes of the surface molecule CD86, proinflammatory cytokines (TNF-α, IL-6, and IL-1β), and antibacterial effector NO synthase 2 (iNOS). During M1 macrophage polarization, macrophages acquire phagocytic and microbicidal competence, which promotes the host antibacterial response. As we observed that CPSIT_P7-induced M1 macrophages could partially reduce the infected mice pulmonary Chlamydia psittaci load. Furthermore, CPSIT_P7 induced M1 macrophage polarization through the TLR4-mediated MAPK and NF-κB pathways. Collectively, our results highlight the effect of CPSIT_P7 on macrophage polarization and provide new insights into new prevention and treatment strategies for chlamydial infection.
Collapse
Affiliation(s)
- Siqin He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Yanru Huang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Weiwei Li
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China
| | - Chaoqun Chen
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China; Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Zhang Z, Wang P, Ma C, Wang J, Li W, Quan C, Cao H, Guo H, Wang L, Yan C, Carr MJ, Meng L, Shi W. Host inflammatory response is the major factor in the progression of Chlamydia psittaci pneumonia. Front Immunol 2022; 13:929213. [PMID: 36119044 PMCID: PMC9478202 DOI: 10.3389/fimmu.2022.929213] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
PurposeChlamydia psittaci (C. psittaci) has caused sporadic, but recurring, fatal community-acquired pneumonia outbreaks worldwide, posing a serious threat to public health. Our understanding of host inflammatory responses to C. psittaci is limited, and many bronchitis cases of psittaci have rapidly progressed to pneumonia with deterioration.MethodsTo clarify the host inflammatory response in psittacosis, we analyzed clinical parameters, and compared transcriptomic data, concentrations of plasma cytokines/chemokines, and changes of immune cell populations in 17 laboratory-confirmed psittacosis cases, namely, 8 pneumonia and 9 bronchitis individuals, in order to assess transcriptomic profiles and pro-inflammatory responses.ResultsPsittacosis cases with pneumonia were found to have abnormal routine blood indices, liver damage, and unilateral pulmonary high-attenuation consolidation. Transcriptome sequencing revealed markedly elevated expression of several pro-inflammatory genes, especially interleukins and chemokines. A multiplex-biometric immunoassay showed that pneumonia cases had higher levels of serum cytokines (G-CSF, IL-2, IL-6, IL-10, IL-18, IP-10, MCP-3, and TNF-α) than bronchitis cases. Increases in activated neutrophils and decreases in the number of lymphocytes were also observed in pneumonia cases.ConclusionWe identified a number of plasma biomarkers distinct to C. psittaci pneumonia and a variety of cytokines elevated with immunopathogenic potential likely inducing an inflammatory milieu and acceleration of the disease progression of psittaci pneumonia. This enhances our understanding of inflammatory responses and changes in vascular endothelial markers in psittacosis with heterogeneous symptoms and should prove helpful for developing both preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Peihan Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing, China
| | - Chuanmin Ma
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Jing Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Wenxin Li
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Jining, China
| | - Chuansong Quan
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Huae Cao
- Department of Infectious Disease, Xintai Third People’s Hospital, Xintai, China
| | - Hongfeng Guo
- Department of Infectious Disease, Xintai Third People’s Hospital, Xintai, China
| | - Liang Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Chengxin Yan
- Department of Medical Imaging, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ling Meng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Weifeng Shi, ; Ling Meng,
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- *Correspondence: Weifeng Shi, ; Ling Meng,
| |
Collapse
|
7
|
He Z, Xiao J, Wang J, Lu S, Zheng K, Yu M, Liu J, Wang C, Ding N, Liang M, Wu Y. The Chlamydia psittaci Inclusion Membrane Protein 0556 Inhibits Human Neutrophils Apoptosis Through PI3K/AKT and NF-κB Signaling Pathways. Front Immunol 2021; 12:694573. [PMID: 34484191 PMCID: PMC8414580 DOI: 10.3389/fimmu.2021.694573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/23/2021] [Indexed: 01/09/2023] Open
Abstract
Inclusion membrane proteins (Incs) play an important role in the structure and stability of chlamydial inclusion and the interaction between Chlamydia spp. and their hosts. Following Chlamydia infection through the respiratory tract, human polymorphonuclear neutrophils (hPMN) not only act as the primary immune cells reaching the lungs, but also serve as reservoir for Chlamydia. We have previously identified a Chlamydia psittaci hypothetical protein, CPSIT_0556, as a medium expressed inclusion membrane protein. However, the role of inclusion membrane protein, CPSIT_0556 in regulating hPMN functions remains unknown. In the present study, we found that CPSIT_0556 could not only inhibit hPMN apoptosis through the PI3K/Akt and NF-κB signaling pathways by releasing IL-8, but also delays procaspase-3 processing and inhibits caspase-3 activity in hPMN. Up-regulating the expression of anti-apoptotic protein Mcl-1 and down-regulating the expression of pro-apoptotic protein Bax could also inhibit the translocalization of Bax in the cytoplasm into the mitochondria, as well as induce the transfer of p65 NF-κB from the cytoplasm to the nucleus. Overall, our findings demonstrate that CPSIT_0556 could inhibit hPMN apoptosis through PI3K/Akt and NF-κB pathways and provide new insights towards understanding a better understanding of the molecular pathogenesis and immune escape mechanisms of C. psittaci.
Collapse
Affiliation(s)
- Zhangping He
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jian Xiao
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital of University of South China, Hengyang, China
| | - Jianye Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Simin Lu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Kang Zheng
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Maoying Yu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Jie Liu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Chuan Wang
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Nan Ding
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| | - Mingxing Liang
- Department of Clinical Laboratory, The Affiliated Huaihua Hospital of University of South China, Huaihua, China
| | - Yimou Wu
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China.,Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China.,Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, China
| |
Collapse
|
8
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|