1
|
Matarredona L, Zafrilla B, Rubio-Portillo E, Bonete MJ, Esclapez J. Deepening the knowledge of universal stress proteins in Haloferax mediterranei. Appl Microbiol Biotechnol 2024; 108:124. [PMID: 38229402 DOI: 10.1007/s00253-023-12899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/18/2024]
Abstract
Haloarchaea, like many other microorganisms, have developed defense mechanisms such as universal stress proteins (USPs) to cope with environmental stresses affecting microbial growth. Despite the wide distribution of these proteins in Archaea, their biochemical characteristics still need to be discovered, and there needs to be more knowledge about them focusing on halophilic Archaea. Therefore, elucidating the role of USPs would provide valuable information to improve future biotechnological applications. Accordingly, transcriptional expression of the 37 annotated USPs in the Haloferax mediterranei genome has been examined under different stress conditions. From a global perspective, finding a clear tendency between particular USPs and specific stress conditions was not possible. Contrary, data analysis indicates that there is a recruitment mechanism of proteins with a similar sequence able to modulate the H. mediterranei growth, accelerating or slowing it, depending on their number. In fact, only three of these USPs were expressed in all the tested conditions, pointing to the cell needing a set of USPs to cope with stress conditions. After analysis of the RNA-Seq data, three differentially expressed USPs were selected and homologously overexpressed. According to the growth data, the overexpression of USPs induces a gain of tolerance in response to stress, as a rule. Therefore, this is the only work that studies all the USPs in an archaeon. It represents a significant first base to continue advancing, not only in this important family of stress proteins but also in the field of biotechnology and, at an industrial level, to improve applications such as designing microorganisms resistant to stress situations. KEY POINTS: • Expression of Haloferax mediterranei USPs has been analyzed in stress conditions. • RNA-seq analysis reveals that most of the USPs in H. mediterranei are downregulated. • Homologous overexpression of USPs results in more stress-tolerant strains.
Collapse
Affiliation(s)
- Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Esther Rubio-Portillo
- Department of Physiology, Genetics and Microbiology, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
2
|
Huang F, Lei Y, Duan J, Kang Y, Luo Y, Ding D, Chen Y, Li S. Investigation of heat stress responses and adaptation mechanisms by integrative metabolome and transcriptome analysis in tea plants (Camellia sinensis). Sci Rep 2024; 14:10023. [PMID: 38693343 PMCID: PMC11063163 DOI: 10.1038/s41598-024-60411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024] Open
Abstract
Extreme high temperature has deleterious impact on the yield and quality of tea production, which has aroused the attention of growers and breeders. However, the mechanisms by which tea plant varieties respond to extreme environmental heat is not clear. In this study, we analyzed physiological indices, metabolites and transcriptome differences in three different heat-tolerant tea plant F1 hybrid progenies. Results showed that the antioxidant enzyme activity, proline, and malondialdehyde were significantly decreased in heat-sensitive 'FWS' variety, and the accumulation of reactive oxygen molecules such as H2O2 and O2- was remarkably increased during heat stress. Metabolomic analysis was used to investigate the metabolite accumulation pattern of different varieties in response to heat stress. The result showed that a total of 810 metabolites were identified and more than 300 metabolites were differentially accumulated. Transcriptional profiling of three tea varieties found that such genes encoding proteins with chaperon domains were preferentially expressed in heat-tolerant varieties under heat stress, including universal stress protein (USP32, USP-like), chaperonin-like protein 2 (CLP2), small heat shock protein (HSP18.1), and late embryogenesis abundant protein (LEA5). Combining metabolomic with transcriptomic analyses discovered that the flavonoids biosynthesis pathway was affected by heat stress and most flavonols were up-regulated in heat-tolerant varieties, which owe to the preferential expression of key FLS genes controlling flavonol biosynthesis. Take together, molecular chaperons, or chaperon-like proteins, flavonols accumulation collaboratively contributed to the heat stress adaptation in tea plant. The present study elucidated the differences in metabolite accumulation and gene expression patterns among three different heat-tolerant tea varieties under extreme ambient high temperatures, which helps to reveal the regulatory mechanisms of tea plant adaptation to heat stress, and provides a reference for the breeding of heat-tolerant tea plant varieties.
Collapse
Affiliation(s)
- Feiyi Huang
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yu Lei
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Jihua Duan
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yankai Kang
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yi Luo
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Ding Ding
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Yingyu Chen
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China
| | - Saijun Li
- Tea Research Institute in Hunan Academy of Agricultural Sciences/National Small and Medium Leaf Tea Plant Germplasm Resource Nursery (Changsha)/National Centre for Tea Improvement, Hunan Branch, Changsha, 410125, China.
| |
Collapse
|
3
|
Qi T, He F, Zhang X, Wang J, Zhang Z, Jiang H, Zhao B, Du C, Che Y, Feng X, Wang Y, Li F. Genome-Wide Identification and Expression Profiling of Potato ( Solanum tuberosum L.) Universal Stress Proteins Reveal Essential Roles in Mechanical Damage and Deoxynivalenol Stress. Int J Mol Sci 2024; 25:1341. [PMID: 38279341 PMCID: PMC10816615 DOI: 10.3390/ijms25021341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Universal stress proteins (USPs) play an important regulatory role in responses to abiotic stress. Most of the research related to USPs so far has been conducted on plant models such as Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa L.), and cotton (Gossypium hirsutum L.). The potato (Solanum tuberosum L.) is one of the four major food crops in the world. The potato is susceptible to mechanical damage and infection by pathogenic fungi during transport and storage. Deoxynivalenol (DON) released by Fusarium can seriously degrade the quality of potatoes. As a result, it is of great significance to study the expression pattern of the potato StUSP gene family under abiotic stress conditions. In this study, a total of 108 USP genes were identified from the genome of the Atlantic potato, divided into four subgroups. Based on their genetic structure, the physical and chemical properties of their proteins and other aspects of their biological characteristics are comprehensively analyzed. Collinear analysis showed that the homologous genes of StUSPs and four other representative species (Solanum lycopersicum, Arabidopsis, Oryza sativa L., and Nicotiana attenuata) were highly conserved. The cis-regulatory elements of the StUSPs promoter are involved in plant hormones, environmental stress, mechanical damage, and light response. RNA-seq analysis showed that there are differences in the expression patterns of members of each subgroup under different abiotic stresses. A Weighted Gene Coexpression Network Analysis (WGCNA) of the central gene showed that the differential coexpression gene is mainly involved in the plant-pathogen response process, plant hormone signal transduction, and the biosynthesis process of secondary metabolites. Through qRT-PCR analysis, it was confirmed that StUSP13, StUSP14, StUSP15, and StUSP41 may be important candidate genes involved in the response to adversity stress in potatoes. The results of this study provide a basis for further research on the functional analysis of StUSPs in the response of potatoes to adversity stress.
Collapse
Affiliation(s)
- Tianshuai Qi
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xinqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Jiaqi Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Zengli Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Heran Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China;
| | - Biao Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yunzhu Che
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Xu Feng
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Yingnan Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (T.Q.); (F.H.); (X.Z.); (J.W.); (Z.Z.); (B.Z.); (C.D.); (Y.C.); (X.F.)
| |
Collapse
|
4
|
Korf L, Ye X, Vogt MS, Steinchen W, Watad M, van der Does C, Tourte M, Sivabalasarma S, Albers SV, Essen LO. Archaeal GPN-loop GTPases involve a lock-switch-rock mechanism for GTP hydrolysis. mBio 2023; 14:e0085923. [PMID: 37962382 PMCID: PMC10746158 DOI: 10.1128/mbio.00859-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/05/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE GPN-loop GTPases have been found to be crucial for eukaryotic RNA polymerase II assembly and nuclear trafficking. Despite their ubiquitous occurrence in eukaryotes and archaea, the mechanism by which these GTPases mediate their function is unknown. Our study on an archaeal representative from Sulfolobus acidocaldarius showed that these dimeric GTPases undergo large-scale conformational changes upon GTP hydrolysis, which can be summarized as a lock-switch-rock mechanism. The observed requirement of SaGPN for motility appears to be due to its large footprint on the archaeal proteome.
Collapse
Affiliation(s)
- Lukas Korf
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Xing Ye
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Marian S. Vogt
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, Philipps University, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Strasse, Marburg, Germany
| | - Mohamed Watad
- Department of Chemistry, Philipps University, Marburg, Germany
| | - Chris van der Does
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Maxime Tourte
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | - Shamphavi Sivabalasarma
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- University of Freiburg, Institute of Biology, Molecular Biology of Archaea, Freiburg, Germany
| | | |
Collapse
|
5
|
Diao J, Gu W, Jiang Z, Wang J, Zou H, Zong C, Ma L. Comprehensive Analysis of Universal Stress Protein Family Genes and Their Expression in Fusarium oxysporum Response of Populus davidiana × P. alba var. pyramidalis Louche Based on the Transcriptome. Int J Mol Sci 2023; 24:ijms24065405. [PMID: 36982480 PMCID: PMC10049587 DOI: 10.3390/ijms24065405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Universal stress proteins (USPs) are typical stress-inducible proteins that function directly in a variety of biotic or abiotic stresses and effectively protect plants from complex, adverse environments. However, the expression patterns of USP genes under pathogen stress and their molecular mechanisms in stress resistance have not been reported in detail. In this study, 46 USP genes were identified from Populus trichocarpa (PtrUSPs), and their biological characteristics were comprehensively analyzed based on phylogeny, physicochemical properties of proteins, and gene structures. The promoter regions of PtrUSPs contain a variety of cis-acting elements related to hormone and stress response. The results of a collinearity analysis showed that PtsrUSPs were highly conserved with homologous genes from four other representative species (Arabidopsis thaliana, Eucalyptus grandis, Glycine max, and Solanum lycopersicum). Furthermore, RNA-Seq analysis showed that the expression of 46 USPs from P. davidiana × P. alba var. pyramidalis Louche (PdpapUSPs) was significantly induced by Fusarium oxysporum. The co-expression network and gene ontology analysis of PtrUSPs showed that they participated in the response to stress and response to stimulus through precise coordination. The results of this paper systematically revealed the biological characteristics of PtrUSPs and the characteristics of their response to F. oxysporum stress, which will lay a theoretical foundation for improving genetic traits and the breeding of poplar disease-resistant varieties in subsequent studies.
Collapse
Affiliation(s)
- Jian Diao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Wei Gu
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Zhehui Jiang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Jiaqi Wang
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Hongfei Zou
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
- Correspondence: (C.Z.); (L.M.)
| |
Collapse
|
6
|
Luo D, Wu Z, Bai Q, Zhang Y, Huang M, Huang Y, Li X. Universal Stress Proteins: From Gene to Function. Int J Mol Sci 2023; 24:ijms24054725. [PMID: 36902153 PMCID: PMC10003552 DOI: 10.3390/ijms24054725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Universal stress proteins (USPs) exist across a wide range of species and are vital for survival under stressful conditions. Due to the increasingly harsh global environmental conditions, it is increasingly important to study the role of USPs in achieving stress tolerance. This review discusses the role of USPs in organisms from three aspects: (1) organisms generally have multiple USP genes that play specific roles at different developmental periods of the organism, and, due to their ubiquity, USPs can be used as an important indicator to study species evolution; (2) a comparison of the structures of USPs reveals that they generally bind ATP or its analogs at similar sequence positions, which may underlie the regulatory role of USPs; and (3) the functions of USPs in species are diverse, and are generally directly related to the stress tolerance. In microorganisms, USPs are associated with cell membrane formation, whereas in plants they may act as protein chaperones or RNA chaperones to help plants withstand stress at the molecular level and may also interact with other proteins to regulate normal plant activities. This review will provide directions for future research, focusing on USPs to provide clues for the development of stress-tolerant crop varieties and for the generation of novel green pesticide formulations in agriculture, and to better understand the evolution of drug resistance in pathogenic microorganisms in medicine.
Collapse
|
7
|
Phan KAT, Paeng SK, Chae HB, Park JH, Lee ES, Wi SD, Bae SB, Kim MG, Yun D, Kim W, Lee SY. Universal Stress Protein (
USP
) regulates the circadian rhythm of central oscillator genes in
Arabidopsis. FEBS Lett 2022; 596:1871-1880. [DOI: 10.1002/1873-3468.14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Kieu Anh Thi Phan
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Seol Ki Paeng
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Ho Byoung Chae
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Joung Hun Park
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Eun Seon Lee
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Seong Dong Wi
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Su Bin Bae
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | | | - Dae‐Jin Yun
- Department of Biomedical Science & Engineering Konkuk University Seoul, 05029 Korea
| | - Woe‐Yeon Kim
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| | - Sang Yeol Lee
- Division of Applied Life Science (BK21+) and PMBBRC, 2College of Pharmacy Gyeongsang National University Jinju, 52828 Korea
| |
Collapse
|
8
|
Shi J, He H, Hu D, Song B. Defense Mechanism of Capsicum annuum L. Infected with Pepper Mild Mottle Virus Induced by Vanisulfane. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3618-3632. [PMID: 35297641 DOI: 10.1021/acs.jafc.2c00659] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pepper mild mottle virus (PMMoV), an RNA virus, is one of the most devastating pathogens in pepper crops and has a significant influence on global crop yields. PMMoV poses a major threat to the global shortage of pepper plants and other Solanaceae crops due to the lack of an effective antiviral agent. In this study, we have developed a plant immune inducer (vanisulfane), as a "plant vaccine" that boosts plant immunity against PMMoV, and studied its resistance mechanism. The protective activity of vanisulfane against PMMoV was 59.4%. Vanisulfane can enhance the activity of defense enzymes and improve the content of chlorophyll, flavonoids, and total phenols for removing harmful free radicals from plants. Furthermore, vanisulfane was found to enhance defense genes. Label-free quantitative proteomics would tackle disease resistance pathways of vanisulfane. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, differentially abundant proteins (DAPs) are mainly involved in starch and sucrose metabolism, photosynthesis, MAPK signaling pathway, and oxidative phosphorylation pathway. These results are crucial for the discovery of new pesticides, understanding the improvement of plant immunity and the antiviral activity of plant immune inducers.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
9
|
Patro M, van Wolferen M, Ye X, Albers SV, Quax TEF. Methods to Analyze Motility in Eury- and Crenarchaea. Methods Mol Biol 2022; 2522:373-385. [PMID: 36125764 DOI: 10.1007/978-1-0716-2445-6_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many archaea display swimming motility in liquid medium, which is empowered by the archaellum. Directional movement requires a functional archaellum and a sensing system, such as the chemotaxis system that is used by Euryarchaea. Two well-studied models are the euryarchaeon Haloferax volcanii and the crenarchaeon Sulfolobus acidocaldarius. In this chapter we describe two methods to analyze their swimming behavior and directional movement: (a) time-lapse microscopy under native temperatures and (b) spotting on semi-solid agar or gelrite plates. Whereas the first method allows for deep analysis of swimming behavior, the second method is suited for high throughput comparison of multiple strains.
Collapse
Affiliation(s)
- Megha Patro
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Marleen van Wolferen
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Xing Ye
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
| | - Tessa E F Quax
- Archaeal Virus-Host Interactions, Faculty of Biology, Institute of Biology II, University of Freiburg, Freiburg, Germany.
- Biology of Archaea and Viruses, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
10
|
Chauhan SM, Poudel S, Rychel K, Lamoureux C, Yoo R, Al Bulushi T, Yuan Y, Palsson BO, Sastry AV. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius. Front Microbiol 2021; 12:753521. [PMID: 34777307 PMCID: PMC8578740 DOI: 10.3389/fmicb.2021.753521] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile's responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea.
Collapse
Affiliation(s)
- Siddharth M. Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Reo Yoo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Tahani Al Bulushi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Yuan Yuan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
11
|
Masamba P, Kappo AP. Parasite Survival and Disease Persistence in Cystic Fibrosis, Schistosomiasis and Pathogenic Bacterial Diseases: A Role for Universal Stress Proteins? Int J Mol Sci 2021; 22:10878. [PMID: 34639223 PMCID: PMC8509486 DOI: 10.3390/ijms221910878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Universal stress proteins (USPs) were originally discovered in Escherichia coli over two decades ago and since then their presence has been detected in various organisms that include plants, archaea, metazoans, and bacteria. As their name suggests, they function in a series of various cellular responses in both abiotic and biotic stressful conditions such as oxidative stress, exposure to DNA damaging agents, nutrient starvation, high temperature and acidic stress, among others. Although a highly conserved group of proteins, the molecular and biochemical aspects of their functions are largely evasive. This is concerning, as it was observed that USPs act as essential contributors to the survival/persistence of various infectious pathogens. Their ubiquitous nature in various organisms, as well as their augmentation during conditions of stress, is a clear indication of their direct or indirect importance in providing resilience against such conditions. This paper seeks to clarify what has already been reported in the literature on the proposed mechanism of action of USPs in pathogenic organisms.
Collapse
Affiliation(s)
- Priscilla Masamba
- Molecular Biophysics and Structural Biology (MBSB) Group, Department of Biochemistry, Kingsway Campus, University of Johannesburg, Auckland Park 2006, South Africa;
| | | |
Collapse
|
12
|
Woodbury DJ, Whitt EC, Coffman RE. A review of TNP-ATP in protein binding studies: benefits and pitfalls. BIOPHYSICAL REPORTS 2021; 1:100012. [PMID: 36425312 PMCID: PMC9680771 DOI: 10.1016/j.bpr.2021.100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 08/03/2021] [Indexed: 06/16/2023]
Abstract
We review 50 years of use of 2',3'-O-trinitrophenyl (TNP)-ATP, a fluorescently tagged ATP analog. It has been extensively used to detect binding interactions of ATP to proteins and to measure parameters of those interactions such as the dissociation constant, Kd, or inhibitor dissociation constant, Ki. TNP-ATP has also found use in other applications, for example, as a fluorescence marker in microscopy, as a FRET pair, or as an antagonist (e.g., of P2X receptors). However, its use in protein binding studies has limitations because the TNP moiety often enhances binding affinity, and the fluorescence changes that occur with binding can be masked or mimicked in unexpected ways. The goal of this review is to provide a clear perspective of the pros and cons of using TNP-ATP to allow for better experimental design and less ambiguous data in future experiments using TNP-ATP and other TNP nucleotides.
Collapse
Affiliation(s)
- Dixon J. Woodbury
- Department of Cell Biology and Physiology
- Neuroscience Center, Brigham Young University, Provo, Utah
| | | | | |
Collapse
|