1
|
Alvarez-Aldana A, Ikhimiukor OO, Guaca-González YM, Montoya-Giraldo M, Souza SSR, Buiatte ABG, Andam CP. Genomic insights into the antimicrobial resistance and virulence of Helicobacter pylori isolates from gastritis patients in Pereira, Colombia. BMC Genomics 2024; 25:843. [PMID: 39251950 PMCID: PMC11382513 DOI: 10.1186/s12864-024-10749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Helicobacter pylori infects the stomach and/or small intestines in more than half of the human population. Infection with H. pylori is the most common cause of chronic gastritis, which can lead to more severe gastroduodenal pathologies such as peptic ulcer, mucosa-associated lymphoid tissue lymphoma, and gastric cancer. H. pylori infection is particularly concerning in Colombia in South America, where > 80% of the population is estimated to be infected with H. pylori and the rate of stomach cancer is one of the highest in the continent. RESULTS We compared the antimicrobial susceptibility profiles and short-read genome sequences of five H. pylori isolates obtained from patients diagnosed with gastritis of varying severity (chronic gastritis, antral erosive gastritis, superficial gastritis) in Pereira, Colombia sampled in 2015. Antimicrobial susceptibility tests revealed the isolates to be resistant to at least one of the five antimicrobials tested: four isolates were resistant to metronidazole, two to clarithromycin, two to levofloxacin, and one to rifampin. All isolates were susceptible to tetracycline and amoxicillin. Comparative genome analyses revealed the presence of genes associated with efflux pump, restriction modification systems, phages and insertion sequences, and virulence genes including the cytotoxin genes cagA and vacA. The five genomes represent three novel sequence types. In the context of the Colombian and global populations, the five H. pylori isolates from Pereira were phylogenetically distant to each other but were closely related to other lineages circulating in the country. CONCLUSIONS H. pylori from gastritis of different severity varied in their antimicrobial susceptibility profiles and genome content. This knowledge will be useful in implementing appropriate eradication treatment regimens for specific types of gastritis. Understanding the genetic and phenotypic heterogeneity in H. pylori across the geographical landscape is critical in informing health policies for effective disease prevention and management that is most effective at local and country-wide scales. This is especially important in Colombia and other South American countries that are poorly represented in global genomic surveillance studies of bacterial pathogens.
Collapse
Affiliation(s)
- Adalucy Alvarez-Aldana
- Grupo de Investigación en Microbiología y Biotecnología (MICROBIOTEC), Universidad Libre Seccional Pereira, Programa de Microbiología, Pereira, Colombia
- Grupo de Investigación en Enfermedades Infecciosas (GRIENI), Universidad Tecnológica de Pereira, Programa de Medicina, Pereira, Colombia
| | - Odion O Ikhimiukor
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Yina Marcela Guaca-González
- Grupo de Investigación en Microbiología y Biotecnología (MICROBIOTEC), Universidad Libre Seccional Pereira, Programa de Microbiología, Pereira, Colombia
- Grupo de Investigación en Enfermedades Infecciosas (GRIENI), Universidad Tecnológica de Pereira, Programa de Medicina, Pereira, Colombia
| | - Manuela Montoya-Giraldo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Stephanie S R Souza
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Ana Beatriz Garcez Buiatte
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
- Molecular Epidemiology Laboratory, Federal University of Uberlândia, Minas Gerais, Brazil
| | - Cheryl P Andam
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
2
|
Guzmán J, Castillo D, González-Siccha AD, Bussalleu A, Trespalacios-Rangel AA, Lescano AG, Sauvain M. Helicobacter pylori cagA, vacA, iceA and babA Genotypes from Peruvian Patients with Gastric Intestinal Metaplasia. Cancers (Basel) 2024; 16:1476. [PMID: 38672558 PMCID: PMC11047899 DOI: 10.3390/cancers16081476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
We explored the clinical-stage association of gastric intestinal metaplasia (IM) compared to cases of chronic non-atrophic gastritis (CNAG) and its relationship with virulence genotypes of Helicobacter pylori (H. pylori) clinical isolates from patients with dyspepsia in Peru. This study was cross-sectional and included 158 H. pylori clinical isolates; each isolate corresponded to a different Peruvian patient, genotyped by polymerase chain reaction to detect cagA gene and EPIYA motifs, the vacA gene (alleles s1, s2, i1, i2, d1, d2, m1, m2 and subtypes s1a, s1b and s1c), the iceA gene (alleles 1 and 2), and the babA gene (allele 2). We observed that 38.6% presented with IM and that all clinical isolates were CagA positive. The EPIYA-ABC motif was predominant (68.4%), and we observed a high frequency for the vacA gene alleles s1 (94.9%), m1 (81.7%), i1 (63.9%), and d1 (70.9%). Strains with both iceA alleles were also detected (69.6%) and 52.2% were babA2 positive. In addition, it was observed that the cagA+/vacAs1m1 (PR: 2.42, 1.14 to 5.13, p < 0.05) and cagA+/vacAs1am1 (PR: 1.67, 1.13 to 2.45, p < 0.01) genotypes were associated with IM. Our findings revealed the cagA and vacA risk genotypes predominance, and we provided clinically relevant associations between Peruvian patients with H. pylori infection and IM clinical stage.
Collapse
Affiliation(s)
- Jesús Guzmán
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15024, Peru; (D.C.); (A.B.); (M.S.)
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Denis Castillo
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15024, Peru; (D.C.); (A.B.); (M.S.)
| | - Anabel D. González-Siccha
- Departamento de Bioquímica, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo 13011, Peru;
| | - Alejandro Bussalleu
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15024, Peru; (D.C.); (A.B.); (M.S.)
| | - Alba A. Trespalacios-Rangel
- Grupo de Investigación en Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Andres G. Lescano
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima 15102, Peru;
| | - Michel Sauvain
- Laboratorio Centinela de Helicobacter pylori, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima 15024, Peru; (D.C.); (A.B.); (M.S.)
- UMR 152 Pharmacochimie et Biologie pour le Développement (PHARMA-DEV), Institut de Recherche pour le Développement (IRD), Université de Toulouse, CEDEX 9, 31062 Toulouse, France
| |
Collapse
|
3
|
Yamaoka Y, Saruuljavkhlan B, Alfaray RI, Linz B. Pathogenomics of Helicobacter pylori. Curr Top Microbiol Immunol 2023; 444:117-155. [PMID: 38231217 DOI: 10.1007/978-3-031-47331-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The human stomach bacterium Helicobacter pylori, the causative agent of gastritis, ulcers and adenocarcinoma, possesses very high genetic diversity. H. pylori has been associated with anatomically modern humans since their origins over 100,000 years ago and has co-evolved with its human host ever since. Predominantly intrafamilial and local transmission, along with genetic isolation, genetic drift, and selection have facilitated the development of distinct bacterial populations that are characteristic for large geographical areas. H. pylori utilizes a large arsenal of virulence and colonization factors to mediate the interaction with its host. Those include various adhesins, the vacuolating cytotoxin VacA, urease, serine protease HtrA, the cytotoxin-associated genes pathogenicity island (cagPAI)-encoded type-IV secretion system and its effector protein CagA, all of which contribute to disease development. While many pathogenicity-related factors are present in all strains, some belong to the auxiliary genome and are associated with specific phylogeographic populations. H. pylori is naturally competent for DNA uptake and recombination, and its genome evolution is driven by extraordinarily high recombination and mutation rates that are by far exceeding those in other bacteria. Comparative genome analyses revealed that adaptation of H. pylori to individual hosts is associated with strong selection for particular protein variants that facilitate immune evasion, especially in surface-exposed and in secreted virulence factors. Recent studies identified single-nucleotide polymorphisms (SNPs) in H. pylori that are associated with the development of severe gastric disease, including gastric cancer. Here, we review the current knowledge about the pathogenomics of H. pylori.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Department of Medicine, Gastroenterology and Hepatology Section, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Batsaikhan Saruuljavkhlan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
| | - Ricky Indra Alfaray
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, 1-1, Idaigaoka, Hasama-machi, Yufu Oita, 879-5593, Japan
- Helicobacter pylori and Microbiota Study Group, Universitas Airlangga, Surabaya, 60286, East Java, Indonesia
| | - Bodo Linz
- Division of Microbiology, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany.
| |
Collapse
|
4
|
Guevara-Tique AA, Torres RC, Bravo MM, Carvajal Carmona LG, Echeverry de Polanco MM, Bohórquez ME, Torres J. Recombination events drives the emergence of Colombian Helicobacter pylori subpopulations with self-identity ancestry. Virulence 2022; 13:1146-1160. [PMID: 35838227 PMCID: PMC9291697 DOI: 10.1080/21505594.2022.2095737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Helicobacter pylori have coevolved with mankind since its origins, adapting to different human groups. In America, H. pylori has evolved into several subpopulations. We analysed the genome of 154 Colombian strains along with 1,091 strains from worldwide populations to discern the ancestry and adaption to Colombian people. Population structure and ancestry was inferred with FineStructure and ChromoPainter. Phylogenetic relationship and the relative effect of recombination were analysing the core SNPs. Also, a Fst index was calculated to identify the gene variants with the strongest fixation in the Colombian subpopulations compared to their parent population hspSWEurope. FineStructure allowed the identification of two Colombian subpopulations, the previously described hspSWEuropeColombia and a novel subpopulation named hspColombia, that included three subgroups following their geographic origin. Colombian subpopulations represent an admixture of European, African and Indigenous ancestry; although some genomes showed a high proportion of self identity, suggesting an advanced adaption to these mestizo Colombian groups. We found that recombination is more important that punctual mutations in H. pylori genome diversity, 13.9 more important in hspSWEurope, 12.5 in hspSWEColombia and 10.5 in hspColombia, reflecting the divergence of these subpopulations. Fst analysis identified 82 SNPs fixed in 26 genes of the hspColombia subpopulation that encode for outer membrane and central metabolism proteins. Strongest fixation indexes were identified in genes encoding HofC, HopE, FrpB-4 and Sialidase A. These findings demonstrate that H. pylori has evolved in Colombia to give rise to subpopulations with a self identity ancestry, reflected in allele changes on genes encoding for outer membrane proteins.
Collapse
Affiliation(s)
- Alix A Guevara-Tique
- Grupo de Investigación en Citogenética, Filogenia y Evolución de Poblaciones, Departamento de Ciencias y Ciencias de la Salud, Universidad del Tolima, Tolima, Colombia
| | - Roberto C Torres
- The Center for Microbes, Development and Health, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Maria M Bravo
- Laboratorio de Inmunología, Instituto Nacional de Cancerología, Bogotá, D. C., Colombia
| | - Luis G Carvajal Carmona
- Genome Center, Department of Biochemistry and Molecular Medicine, School of Medicine-University of California, Davis, California, USA
| | - María M Echeverry de Polanco
- Grupo de Investigación en Citogenética, Filogenia y Evolución de Poblaciones, Departamento de Ciencias y Ciencias de la Salud, Universidad del Tolima, Tolima, Colombia
| | - Mabel E Bohórquez
- Grupo de Investigación en Citogenética, Filogenia y Evolución de Poblaciones, Departamento de Ciencias y Ciencias de la Salud, Universidad del Tolima, Tolima, Colombia.,Medicine Program, Department of Health Sciences, Tolima University, Tolima, Colombia
| | - Javier Torres
- c Unidad de Investigación en Enfermedades Infecciosas, UMAE Pediatria, Instituto Mexicano del Seguro Social, México
| |
Collapse
|
5
|
Collen EJ, Johar AS, Teixeira JC, Llamas B. The immunogenetic impact of European colonization in the Americas. Front Genet 2022; 13:918227. [PMID: 35991555 PMCID: PMC9388791 DOI: 10.3389/fgene.2022.918227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
The introduction of pathogens originating from Eurasia into the Americas during early European contact has been associated with high mortality rates among Indigenous peoples, likely contributing to their historical and precipitous population decline. However, the biological impacts of imported infectious diseases and resulting epidemics, especially in terms of pathogenic effects on the Indigenous immunity, remain poorly understood and highly contentious to this day. Here, we examine multidisciplinary evidence underpinning colonization-related immune genetic change, providing contextualization from anthropological studies, paleomicrobiological evidence of contrasting host-pathogen coevolutionary histories, and the timings of disease emergence. We further summarize current studies examining genetic signals reflecting post-contact Indigenous population bottlenecks, admixture with European and other populations, and the putative effects of natural selection, with a focus on ancient DNA studies and immunity-related findings. Considering current genetic evidence, together with a population genetics theoretical approach, we show that post-contact Indigenous immune adaptation, possibly influenced by selection exerted by introduced pathogens, is highly complex and likely to be affected by multifactorial causes. Disentangling putative adaptive signals from those of genetic drift thus remains a significant challenge, highlighting the need for the implementation of population genetic approaches that model the short time spans and complex demographic histories under consideration. This review adds to current understandings of post-contact immunity evolution in Indigenous peoples of America, with important implications for bettering our understanding of human adaptation in the face of emerging infectious diseases.
Collapse
Affiliation(s)
- Evelyn Jane Collen
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Angad Singh Johar
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Mathematics and Statistics, The University of Melbourne, Parkville, VIC, Australia
| | - João C. Teixeira
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- School of Culture History and Language, The Australian National University, Canberra, ACT, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage (CABAH), School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Telethon Kids Institute, Indigenous Genomics Research Group, Adelaide, SA, Australia
| |
Collapse
|
6
|
Miller AK, Williams SM. Helicobacter pylori infection causes both protective and deleterious effects in human health and disease. Genes Immun 2021; 22:218-226. [PMID: 34244666 PMCID: PMC8390445 DOI: 10.1038/s41435-021-00146-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Infection with Helicobacter pylori (H. pylori) is necessary but not sufficient for the development of gastric cancer, the third leading cause of cancer death globally. H. pylori infection affects over half of people globally; however, it does not affect populations uniformly. H. pylori infection rates are declining in western industrialized countries but are plateauing in developing and newly industrialized countries where gastric cancer is most prevalent. Despite H. pylori infection being the primary causative agent for gastric cancer, H. pylori infection can also cause other effects, detrimental or beneficial, throughout an individual's life, with the beneficial effects often being seen in childhood and the deleterious effects in adulthood. H. pylori is an ancient bacterium and its likelihood of affecting disease or health is dependent on both human and bacterial genetics that have co-evolved over millennia. In this review, we focus on the impact of infection and its genetic bases in different populations and diseases throughout an individual's lifespan, highlighting the benefits of individualized treatment and argue that universal eradication of H. pylori in its host may cause more harm than good for those infected with H. pylori.
Collapse
Affiliation(s)
- Anna K Miller
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH
| | - Scott M Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH,Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH
| |
Collapse
|