1
|
Ren J, Zhang M, Guo X, Zhou X, Ding N, Lei C, Jia C, Wang Y, Zhao J, Dong Z, Lu D. Furfural tolerance of mutant Saccharomyces cerevisiae selected via ionizing radiation combined with adaptive laboratory evolution. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:117. [PMID: 39175057 PMCID: PMC11342514 DOI: 10.1186/s13068-024-02562-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Lignocellulose is a renewable and sustainable resource used to produce second-generation biofuel ethanol to cope with the resource and energy crisis. Furfural is the most toxic inhibitor of Saccharomyces cerevisiae cells produced during lignocellulose treatment, and can reduce the ability of S. cerevisiae to utilize lignocellulose, resulting in low bioethanol yield. In this study, multiple rounds of progressive ionizing radiation was combined with adaptive laboratory evolution to improve the furfural tolerance of S. cerevisiae and increase the yield of ethanol. RESULTS In this study, the strategy of multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution significantly improved the furfural tolerance of brewing yeast. After four rounds of experiments, four mutant strains resistant to high concentrations of furfural were obtained (SCF-R1, SCF-R2, SCF-R3, and SCF-R4), with furfural tolerance concentrations of 4.0, 4.2, 4.4, and 4.5 g/L, respectively. Among them, the mutant strain SCF-R4 obtained in the fourth round of radiation had a cellular malondialdehyde content of 49.11 nmol/mg after 3 h of furfural stress, a weakening trend in mitochondrial membrane potential collapse, a decrease in accumulated reactive oxygen species, and a cell death rate of 12.60%, showing better cell membrane integrity, stable mitochondrial function, and an improved ability to limit reactive oxygen species production compared to the other mutant strains and the wild-type strain. In a fermentation medium containing 3.5 g/L furfural, the growth lag phase of the SCF-R4 mutant strain was shortened, and its growth ability significantly improved. After 96 h of fermentation, the ethanol production of the mutant strain SCF-R4 was 1.86 times that of the wild-type, indicating that with an increase in the number of irradiation rounds, the furfural tolerance of the mutant strain SCF-R4 was effectively enhanced. In addition, through genome-transcriptome analysis, potential sites related to furfural detoxification were identified, including GAL7, MAE1, PDC6, HXT1, AUS1, and TPK3. CONCLUSIONS These results indicate that multiple rounds of progressive X-ray radiation combined with adaptive laboratory evolution is an effective mutagenic strategy for obtaining furfural-tolerant mutants and that it has the potential to tap genes related to the furfural detoxification mechanism.
Collapse
Affiliation(s)
- Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaopeng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, No. 36 Peng Jiaping, Lanzhou, 730050, Gansu, China.
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenglin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yajuan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziyi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, No. 509 Nanchang Road, Lanzhou, 730000, Gansu, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Wang YJ, Zhou X, Zhang MM, Liu MH, Ding N, Wu QF, Lei CR, Dong ZY, Ren JL, Zhao JR, Jia CL, Liu J, Zhou B, Lu D. Physiological and biochemical characteristics of the carbon ion beam irradiation-generated mutant strain Clostridium butyricum FZM 240 in vitro and in vivo. Enzyme Microb Technol 2024; 178:110447. [PMID: 38626534 DOI: 10.1016/j.enzmictec.2024.110447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 04/18/2024]
Abstract
Clostridium butyricum (C. butyricum) represents a new generation of probiotics, which is beneficial because of its good tolerance and ability to produce beneficial metabolites, such as short-chain fatty acids and enzymes; however, its low enzyme activity limits its probiotic efficacy. In this study, a mutant strain, C. butyricum FZM 240 was obtained using carbon ion beam irradiation, which exhibited greatly improved enzyme production and tolerance. The highest filter paper, endoglucanase, and amylase activities produced by C. butyricum FZM 240 were 125.69 U/mL, 225.82 U/ mL, and 252.28 U/mL, which were 2.58, 1.95, and 2.21-fold higher, respectively, than those of the original strain. The survival rate of the strain increased by 11.40 % and 5.60 % after incubation at 90 °C for 5 min and with simulated gastric fluid at pH 2.5 for 2 h, respectively, compared with that of the original strain. Whole-genome resequencing and quantitative real-time PCR(qRT-PCR) analysis showed that the expression of genes related to enzyme synthesis (GE000348, GE001963 and GE003123) and tolerance (GE001114) was significantly up-regulated, while that of genes related to acid metabolism (GE003450) was significantly down-regulated. On this basis, homology modeling and functional prediction of the proteins encoded by the mutated genes were performed. According to the results, the properties related to the efficacy of C. butyricum as a probiotic were significantly enhanced by carbon ion beam irradiation, which is a novel strategy for the application of Clostridium spp. as feed additives.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China.
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China
| | - Mei-Han Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Qing-Feng Wu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Zi-Yi Dong
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun-Le Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jing-Ru Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Cheng-Lin Jia
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China
| | - Jun Liu
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Bo Zhou
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing 100049, China; Kejin Innovation Institute of Heavy Ion Beam Biological Industry, Baiyin 730900, China; Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou 730070, China.
| |
Collapse
|
3
|
Guo X, Ren J, Zhou X, Zhang M, Lei C, Chai R, Zhang L, Lu D. Strategies to improve the efficiency and quality of mutant breeding using heavy-ion beam irradiation. Crit Rev Biotechnol 2024; 44:735-752. [PMID: 37455421 DOI: 10.1080/07388551.2023.2226339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 04/15/2023] [Indexed: 07/18/2023]
Abstract
Heavy-ion beam irradiation (HIBI) is useful for generating new germplasm in plants and microorganisms due to its ability to induce high mutagenesis rate, broad mutagenesis spectrum, and excellent stability of mutants. However, due to the random mutagenesis and associated mutant breeding modalities, it is imperative to improve HIBI-based mutant breeding efficiency and quality. This review discusses and summarizes the findings of existing theoretical and technical studies and presents a set of tandem strategies to enable efficient and high-quality HIBI-based mutant breeding practices. These strategies: adjust the mutation-inducing techniques, regulate cellular response states, formulate high-throughput screening schemes, and apply the generated superior genetic elements to genetic engineering approaches, thereby, improving the implications and expanding the scope of HIBI-based mutant breeding. These strategies aim to improve the mutagenesis rate, screening efficiency, and utilization of positive mutations. Here, we propose a model based on the integration of these strategies that would leverage the advantages of HIBI while compensating for its present shortcomings. Owing to the unique advantages of HIBI in creating high-quality genetic resources, we believe this review will contribute toward improving HIBI-based breeding.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junle Ren
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cairong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ran Chai
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Lingxi Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
A mutant of Monascus purpureus obtained by carbon ion beam irradiation yielded yellow pigments using various nitrogen sources. Enzyme Microb Technol 2023; 162:110121. [DOI: 10.1016/j.enzmictec.2022.110121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022]
|
5
|
Bai J, Gong Z, Shu M, Zhao H, Ye F, Tang C, Zhang S, Zhou B, Lu D, Zhou X, Lin Q, Liu J. Increased Water-Soluble Yellow Monascus Pigment Productivity via Dual Mutagenesis and Submerged Repeated-Batch Fermentation of Monascus purpureus. Front Microbiol 2022; 13:914828. [PMID: 35756045 PMCID: PMC9218666 DOI: 10.3389/fmicb.2022.914828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/16/2022] [Indexed: 12/02/2022] Open
Abstract
Monascus pigments (MPs) have been used in the food industry for more than 2,000 years and are known for their safety, bold coloring, and physiological activity. MPs are mainly yellow (YMPs), orange (OMPs), and red (RMPs). In this study, a mutant strain Monascus purpureus H14 with high production of water-soluble YMPs (WSYMPs, λmax at 370 nm) was generated instead of primary YMPs (λmax at 420 nm), OMPs (λmax at 470 nm), and RMPs (λmax at 510 nm) produced by the parent strain M. purpureus LQ-6 through dual mutagenesis of atmospheric and room-temperature plasma and heavy ion beam irradiation (HIBI), producing 22.68 U/ml extracellular YMPs and 10.67 U/ml intracellular YMPs. WSYMP production was increased by 289.51% in optimal conditions after response surface methodology was applied in submerged fermentation. Application of combined immobilized fermentation and extractive fermentation improved productivity to 16.89 U/ml/day, 6.70 times greater than with conservative submerged fermentation. The produced WSYMPs exhibited good tone stability to environmental factors, but their pigment values were unstable to pH, light, and high concentrations of Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+. Furtherly, the produced exYMPs were identified as two yellow monascus pigment components (monascusone B and C21H27NO7S) by UHPLC-ESI-MS. This strategy may be extended to industrial production of premium WSYMPs using Monascus.
Collapse
Affiliation(s)
- Jie Bai
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Zihan Gong
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Meng Shu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Hui Zhao
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Fanyu Ye
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Chenglun Tang
- Nanjing Sheng Ming Yuan Health Technology Co. Ltd., Nanjing, China.,Jiangsu Institute of Industrial Biotechnology JITRI Co. Ltd., Nanjing, China
| | - Song Zhang
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Bo Zhou
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Dong Lu
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiang Zhou
- Biophysics Research Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Qinlu Lin
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China
| | - Jun Liu
- National Engineering Research Center of Rice and Byproduct Deep Processing, Central South University of Forestry and Technology, Changsha, China.,Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Waring, Changsha, China
| |
Collapse
|
6
|
Li X, Chen L, Zhou H, Gu S, Wu Y, Wang B, Zhang M, Ding N, Sun J, Pang X, Lu D. LsrB, the hub of ABC transporters involved in the membrane damage mechanisms of heavy ion irradiation in Escherichia coli. Int J Radiat Biol 2021; 97:1731-1740. [PMID: 34597255 DOI: 10.1080/09553002.2021.1987565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Ionizing radiation, especially heavy ion (HI) beams, has been widely used in biology and medicine. However, the mechanism of membrane damage by such radiation remains primarily uncharacterized. PURPOSE Transcriptomic profiles of Escherichia coli (E. coli) treated with HI illustrated the response mechanisms of the membrane, mainly ABC transporters, related genes regulated by antibiotics treatment through enrichment analyses of GO and KEGG. The networks of protein-protein interactions indicated that LsrB was the crucial one among the ABC transporters specially regulated by HI through the calculation of plugins MCODE and cytoHubba of Cytoscape. Finally, the expression pattern, GO/KEGG enrichment terms, and the interaction between nine LuxS/AI-2 quorum sensing system members were investigated. CONCLUSIONS Above all, results suggested that HI might perform membrane damage through regulated material transport, inhibited LuxS/AI-2 system, finally impeded biofilm formation. This work provides further evidence for the role of ABC transporters, especially LsrB, in membrane damage of E. coli to HI. It will provide new strategies for improving the precise application of HI.
Collapse
Affiliation(s)
- Xin Li
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China.,Key Laboratory of Microbial Resources Exploitation and Utilization, Luoyang, China.,National Demonstration Center for Experimental Food Processing and Safety Education, Luoyang, China
| | - Lei Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Haitao Zhou
- Neurology Department, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Ying Wu
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Bing Wang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Miaomiao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Nan Ding
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Jiaju Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Xinyue Pang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China.,University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Gao Y, Zhou X, Zhang MM, Liu YJ, Guo XP, Lei CR, Li WJ, Lu D. Response characteristics of the membrane integrity and physiological activities of the mutant strain Y217 under exogenous butanol stress. Appl Microbiol Biotechnol 2021; 105:2455-2472. [PMID: 33606076 DOI: 10.1007/s00253-021-11174-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/30/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023]
Abstract
Butanol inhibits bacterial activity by destroying the cell membrane of Clostridium acetobutylicum strains and altering functionality. Butanol toxicity also results in destruction of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PTS), thereby preventing glucose transport and phosphorylation and inhibiting transmembrane transport and assimilation of sugars, amino acids, and other nutrients. In this study, based on the addition of exogenous butanol, the tangible macro indicators of changes in the carbon ion beam irradiation-mutant Y217 morphology were observed using scanning electron microscopy (SEM). The mutant has lower microbial adhesion to hydrocarbon (MATH) value than C. acetobutylicum ATCC 824 strain. FDA fluorescence intensity and conductivity studies demonstrated the intrinsically low membrane permeability of the mutant membrane, with membrane potential remaining relatively stable. Monounsaturated FAs (MUFAs) accounted for 35.17% of the mutant membrane, and the saturated fatty acids (SFA)/unsaturated fatty acids (UFA) ratio in the mutant cell membrane was 1.65. In addition, we conducted DNA-level analysis of the mutant strain Y217. Expectedly, through screening, we found gene mutant sites encoding membrane-related functions in the mutant, including ATP-binding cassette (ABC) transporter-related genes, predicted membrane proteins, and the PTS transport system. It is noteworthy that an unreported predicted membrane protein (CAC 3309) may be related to changes in mutant cell membrane properties. KEY POINTS: • Mutant Y217 exhibited better membrane integrity and permeability. • Mutant Y217 was more resistant to butanol toxicity. • Some membrane-related genes of mutant Y217 were mutated.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Xiang Zhou
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Miao-Miao Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Ya-Jun Liu
- University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Xiao-Peng Guo
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Cai-Rong Lei
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China
| | - Wen-Jian Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China.,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China
| | - Dong Lu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730000, China. .,University of Chinese Academy of Sciences, Chinese Academy of Science, Beijing, 100049, China. .,Gansu Key Laboratory of Microbial Resources Exploitation and Application, Lanzhou, 730070, China.
| |
Collapse
|