1
|
Kappa S, Nikolaidou C, Noutsopoulos C, Mamais D, Hadjimitsi E, Kougias PG, Malamis S. Investigating upflow anaerobic sludge blanket process to treat forward osmosis effluents of concentrated municipal wastewater under psychrophilic temperature. BIORESOURCE TECHNOLOGY 2024; 412:131361. [PMID: 39197662 DOI: 10.1016/j.biortech.2024.131361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
This work investigated the stability of the Upflow Anaerobic Sludge Blanket (UASB) reactor under psychrophilic temperatures with varying feed streams, simulating typical and concentrated sewage. In Phase I, treating municipal wastewater, chemical oxygen demand (COD) removal dropped from 77 ± 6 % to 41 ± 2 % as hydraulic retention time decreased from 24 to 12 h and organic loading rate (OLR) increased from 0.6 to 1.3 gCOD/(L∙d). In Phase II, at a similar OLR (≈1.2 gCOD/(L∙d)), the UASB treated organic-rich effluents (from 1.0 to 2.1 ± 0.1 gCOD/L) resulting from the pre-treatment of the forward osmosis (FO) process. The UASB performance improved significantly, achieving 87 ± 3 % COD removal and 63 ± 4 % methane recovery, with microbial analysis confirming methanogen growth. The COD mass balance showed up to 30 % more electrical energy recovery from sewage compared to conventional wastewater treatment plants (WWTPs), indicating that the FO-UASB combination is a promising approach to achieve energy-neutral operation in WWTPs.
Collapse
Affiliation(s)
- Stavroula Kappa
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece.
| | - Charitini Nikolaidou
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece; University Center of International Programmes of Studies, International Hellenic University, 57001 Thessaloniki, Greece
| | - Constantinos Noutsopoulos
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Daniel Mamais
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Elpi Hadjimitsi
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organization Dimitra, 57001 Thessaloniki, Greece
| | - Simos Malamis
- Department of Water Resources and Environmental Engineering, School of Civil Engineering, National Technical University of Athens, 5 Iroon Polytechniou St., Zographou Campus, 15780-GR Athens, Greece
| |
Collapse
|
2
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
3
|
Dueholm MKD, Andersen KS, Korntved AKC, Rudkjøbing V, Alves M, Bajón-Fernández Y, Batstone D, Butler C, Cruz MC, Davidsson Å, Erijman L, Holliger C, Koch K, Kreuzinger N, Lee C, Lyberatos G, Mutnuri S, O'Flaherty V, Oleskowicz-Popiel P, Pokorna D, Rajal V, Recktenwald M, Rodríguez J, Saikaly PE, Tooker N, Vierheilig J, De Vrieze J, Wurzbacher C, Nielsen PH. MiDAS 5: Global diversity of bacteria and archaea in anaerobic digesters. Nat Commun 2024; 15:5361. [PMID: 38918384 PMCID: PMC11199495 DOI: 10.1038/s41467-024-49641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Anaerobic digestion of organic waste into methane and carbon dioxide (biogas) is carried out by complex microbial communities. Here, we use full-length 16S rRNA gene sequencing of 285 full-scale anaerobic digesters (ADs) to expand our knowledge about diversity and function of the bacteria and archaea in ADs worldwide. The sequences are processed into full-length 16S rRNA amplicon sequence variants (FL-ASVs) and are used to expand the MiDAS 4 database for bacteria and archaea in wastewater treatment systems, creating MiDAS 5. The expansion of the MiDAS database increases the coverage for bacteria and archaea in ADs worldwide, leading to improved genus- and species-level classification. Using MiDAS 5, we carry out an amplicon-based, global-scale microbial community profiling of the sampled ADs using three common sets of primers targeting different regions of the 16S rRNA gene in bacteria and/or archaea. We reveal how environmental conditions and biogeography shape the AD microbiota. We also identify core and conditionally rare or abundant taxa, encompassing 692 genera and 1013 species. These represent 84-99% and 18-61% of the accumulated read abundance, respectively, across samples depending on the amplicon primers used. Finally, we examine the global diversity of functional groups with known importance for the anaerobic digestion process.
Collapse
Affiliation(s)
- Morten Kam Dahl Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Kasper Skytte Andersen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anne-Kirstine C Korntved
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Vibeke Rudkjøbing
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Madalena Alves
- Centre of Biological Engineering, University of Minho, Minho, Portugal
| | | | - Damien Batstone
- Australian Centre for Water and Environmental Biotechnology (ACWEB), The University of Queensland, Brisbane, Australia
| | - Caitlyn Butler
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Mercedes Cecilia Cruz
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Åsa Davidsson
- Department of Chemical Engineering, Lund University, Lund, Sweden
| | - Leonardo Erijman
- INGEBI-CONICET, University of Buenos Aires, Buenos Aires, Argentina
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Konrad Koch
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Norbert Kreuzinger
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Changsoo Lee
- Department of Civil, Urban, Earth, and Environmental Engineering & Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Gerasimos Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou, Greece
| | - Srikanth Mutnuri
- Applied Environmental Biotechnology Laboratory, Birla Institute of Technology and Science (BITS-Pilani), Pilani, Goa campus, Goa, India
| | - Vincent O'Flaherty
- School of Biological and Chemical Sciences and Ryan Institute, University of Galway, Galway, Ireland
| | - Piotr Oleskowicz-Popiel
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Poznan, Poland
| | - Dana Pokorna
- Department of Water Technology and Environmental Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Veronica Rajal
- Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | | | - Jorge Rodríguez
- Chemical Engineering Department, Khalifa University, Khalifa, UAE
| | - Pascal E Saikaly
- Environmental Science and Engineering Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Nick Tooker
- Department of Civil and Environmental Engineering, University of Massachusetts Amherst, Amherst, MA, USA
| | - Julia Vierheilig
- Institute of Water Quality and Resource Management, TU Wien, Vienna, Austria
| | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| | - Christian Wurzbacher
- Chair of Urban Water Systems Engineering, Technical University of Munich (TUM), Garching, Germany
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
4
|
Parsy A, Ficara E, Mezzanotte V, Guerreschi A, Guyoneaud R, Monlau F, Sambusiti C. Incorporating saline microalgae biomass in anaerobic digester treating sewage sludge: Impact on performance and microbial populations. BIORESOURCE TECHNOLOGY 2024; 397:130444. [PMID: 38360220 DOI: 10.1016/j.biortech.2024.130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The aim of this study was to acclimate anaerobic prokaryotes to saline microalgae biomass. Semi-continuous experiments were conducted using two 1.5 L mesophilic reactors for 10 weeks, (hydraulic retention time of 21 days). The first reactor was solely fed with sewage sludge (control), while the second received a mixture of sewage sludge and microalgal biomass (80/20 %w/w) cultivated at 70 g·L-1 salinity. The in-reactor salinity reached after the acclimation phase was 14 g·L-1. Biomethane production was comparable between the control and acclimated reactors (205 ± 29 NmLMethane·gVolatileSolids-1). Salinity tolerance assessment of methanogenic archaea revealed that salinity causing 50% inhibition of methane production increased from 10 to 27 g·L-1 after acclimation. Microbial diversity analyses revealed notable changes in methanogenic archaea populations during co-digestion of saline microalgae biomass, particularly methylotrophic (+27%) and acetotrophic (-26%) methanogens. This study has highlighted the possibility of treating efficiently saline microalgae in co-digestion with sewage sludge in future industrial biogas plants.
Collapse
Affiliation(s)
- Aurélien Parsy
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France; TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Valeria Mezzanotte
- Università Degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milan, Italy
| | - Arianna Guerreschi
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci, 32, 20133 Milan, Italy
| | - Rémy Guyoneaud
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS IPREM, Environmental Microbiology and Chemistry, UMR 5254, 64000 Pau, France
| | - Florian Monlau
- TotalEnergies, OneTech, PERL ESD - Pôle D'Etudes et de Recherche de Lacq, Pôle Economique 2, BP 47 - RD 817, 64170 Lacq, France
| | | |
Collapse
|
5
|
Bedoya-Urrego K, Alzate JF. Phylogenomic discernments into Anaerolineaceae thermal adaptations and the proposal of a candidate genus Mesolinea. Front Microbiol 2024; 15:1349453. [PMID: 38486696 PMCID: PMC10937449 DOI: 10.3389/fmicb.2024.1349453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
This study delves into the evolutionary history of Anaerolineaceae, a diverse bacterial family within the Chloroflexota phylum. Employing a multi-faceted approach, including phylogenetic analyses, genomic comparisons, and exploration of adaptive features, the research unveils novel insights into the family's taxonomy and evolutionary dynamics. The investigation employs metagenome-assembled genomes (MAGs), emphasizing their prevalence in anaerobic environments. Notably, a novel mesophilic lineage, tentatively named Mesolinea, emerges within Anaerolineaceae, showcasing a distinctive genomic profile and apparent adaptation to a mesophilic lifestyle. The comprehensive genomic analyses shed light on the family's complex evolutionary patterns, including the conservation of key operons in thermophiles, providing a foundation for understanding the diverse ecological roles and adaptive strategies of Anaerolineaceae members.
Collapse
Affiliation(s)
- Katherine Bedoya-Urrego
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
6
|
Buenaño-Vargas C, Gagliano MC, Paulo LM, Bartle A, Graham A, van Veelen HPJ, O'Flaherty V. Acclimation of microbial communities to low and moderate salinities in anaerobic digestion. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167470. [PMID: 37778560 DOI: 10.1016/j.scitotenv.2023.167470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
In recent years anaerobic digestion (AD) has been investigated as suitable biotechnology to treat wastewater at elevated salinities. However, when starting up AD reactors with inocula that are not adapted to salinity, low concentrations of sodium (Na+) in the influent can already cause disintegration of microbial aggregates and wash-out. This study investigated biomass acclimation to 5 g Na+/L of two different non-adapted inocula in two lab-scale hybrid expanded granular sludge bed (EGSB)-anaerobic filter (AF) reactors fed with synthetic wastewater. After an initial biomass disintegration, new aggregates were formed relatively fast (i.e., after 95 days of operation), indicating microbial community adaptation. The newly formed microbial aggregates accumulated Na+ at the expense of calcium (Ca2+), but this did not hamper biomass retention or process performance. The hybrid reactor configuration, including a pumice stone filter in the upper section, and the low up-flow velocities applied, were key features for retaining the biomass within the system. This reactor configuration can be easily applied and represents a low-cost alternative for acclimating biomass to saline effluents, even in existing digesters. When the acclimated biomass was transferred from EGSB to an up-flow anaerobic sludge blanket (UASB) reactor configuration also fed with saline synthetic wastewater, more dense aggregates in the form of granules were obtained. The performances of the UASB inoculated with the acclimated biomass were comparable to another reactor seeded with saline-adapted granular sludge from a full-scale plant. Regardless of the inoculum origin, a defined core microbiome of Bacteria (Thermovirga, Bacteroidetes vadinHA17, Blvii28 wastewater-sludge group, Mesotoga, and Synergistaceae) and Archaea (Methanosaeta and Methanobacterium) was detected, highlighting the importance of these microbial groups in developing halotolerance and maintaining AD process stability.
Collapse
Affiliation(s)
- Claribel Buenaño-Vargas
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - M Cristina Gagliano
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - Lara M Paulo
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - Andrew Bartle
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - Alison Graham
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland
| | - H Pieter J van Veelen
- Wetsus - European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911MA Leeuwarden, the Netherlands
| | - Vincent O'Flaherty
- Microbial Ecology Laboratory, School of Biological and Chemical Sciences and Ryan Institute, University of Galway, University Road, Ireland.
| |
Collapse
|
7
|
Petriglieri F, Kondrotaite Z, Singleton C, Nierychlo M, Dueholm MKD, Nielsen PH. A comprehensive overview of the Chloroflexota community in wastewater treatment plants worldwide. mSystems 2023; 8:e0066723. [PMID: 37992299 PMCID: PMC10746286 DOI: 10.1128/msystems.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023] Open
Abstract
IMPORTANCE Chloroflexota are often abundant members of the biomass in wastewater treatment plants (WWTPs) worldwide, typically with a filamentous morphology, forming the backbones of the activated sludge floc. However, their overgrowth can often cause operational issues connected to poor settling or foaming, impairing effluent quality and increasing operational costs. Despite their importance, few Chloroflexota genera have been characterized so far. Here, we present a comprehensive overview of Chloroflexota abundant in WWTPs worldwide and an in-depth characterization of their morphology, phylogeny, and ecophysiology, obtaining a broad understanding of their ecological role in activated sludge.
Collapse
Affiliation(s)
- Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Caitlin Singleton
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Marta Nierychlo
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Morten K. D. Dueholm
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per H. Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Xiao Y, Wang X, Wang P, Zhou Z, Wang H, Teng T, Li Y, Yang L. New insights into multi-strategies of sludge granulation in up-flow anaerobic sludge blanket reactors from community succession and interaction. BIORESOURCE TECHNOLOGY 2023; 377:128935. [PMID: 36958683 DOI: 10.1016/j.biortech.2023.128935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to elucidate the multiple strategies employed by anaerobes during granulation in a laboratory upflow anaerobic sludge blanket reactor, based on microbial succession and interactions. The anaerobic granulation process featured staged dominance of microbial genera, corresponding well with the environmental traits. Across the stages (selection, seeding, expansion, and maturation), chemotaxis attraction of nitrogen and/or carbon sources and flagellar motion were the primary strategy of microbial assembly. The second messengers - cyclic adenosine and guanosine monophosphates - partially regulated the agglomeration of filamentous Euryachaeota and Chloroflexi as the inner cores, while quorum sensing mediated the expansion of granules prior to maturation. Antagonism or competition governed the interactions within the phylogenetic molecular ecological network during sludge granulation, which were largely driven by the low-abundance (<1%) taxa. These new insights suggest that better engineering solutions to enhance chemotaxis attraction and species selection could achieve more efficient anaerobic granular sludge processes.
Collapse
Affiliation(s)
- Yeyuan Xiao
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China.
| | - Xucai Wang
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Peiling Wang
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Zhongbo Zhou
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hui Wang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Tao Teng
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Yiwei Li
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| | - Lei Yang
- College of Engineering, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
9
|
Bovio-Winkler P, Guerrero LD, Erijman L, Oyarzúa P, Suárez-Ojeda ME, Cabezas A, Etchebehere C. Genome-centric metagenomic insights into the role of Chloroflexi in anammox, activated sludge and methanogenic reactors. BMC Microbiol 2023; 23:45. [PMID: 36809975 PMCID: PMC9942424 DOI: 10.1186/s12866-023-02765-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/10/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND The phylum Chloroflexi is highly abundant in a wide variety of wastewater treatment bioreactors. It has been suggested that they play relevant roles in these ecosystems, particularly in degrading carbon compounds and on structuring flocs or granules. Nevertheless, their function is not yet well understood as most species have not been isolated in axenic cultures. Here we used a metagenomic approach to investigate Chloroflexi diversity and their metabolic potential in three environmentally different bioreactors: a methanogenic full-scale reactor, a full-scale activated sludge reactor and a lab scale anammox reactor. RESULTS Differential coverage binning approach was used to assemble the genomes of 17 new Chloroflexi species, two of which are proposed as new Candidatus genus. In addition, we recovered the first representative genome belonging to the genus 'Ca. Villigracilis'. Even though samples analyzed were collected from bioreactors operating under different environmental conditions, the assembled genomes share several metabolic features: anaerobic metabolism, fermentative pathways and several genes coding for hydrolytic enzymes. Interestingly, genome analysis from the anammox reactor indicated a putative role of Chloroflexi in nitrogen conversion. Genes related to adhesiveness and exopolysaccharides production were also detected. Complementing sequencing analysis, filamentous morphology was detected by Fluorescent in situ hybridization. CONCLUSION Our results suggest that Chloroflexi participate in organic matter degradation, nitrogen removal and biofilm aggregation, playing different roles according to the environmental conditions.
Collapse
Affiliation(s)
- Patricia Bovio-Winkler
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, CP: 11600, Montevideo, Uruguay
| | - Leandro D Guerrero
- Instituto de Investigaciones en Ingeniería Genética Y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética Y Biología Molecular "Dr Héctor N. Torres" (INGEBI-CONICET), Buenos Aires, Argentina
| | - Pía Oyarzúa
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - María Eugenia Suárez-Ojeda
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Angela Cabezas
- Instituto Tecnológico Regional Centro Sur, Universidad Tecnológica, Francisco Antonio Maciel S/N, CP: 97000, Durazno, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Avenida Italia 3318, CP: 11600, Montevideo, Uruguay.
| |
Collapse
|
10
|
Ceron-Chafla P, de Vrieze J, Rabaey K, van Lier JB, Lindeboom REF. Steering the product spectrum in high-pressure anaerobic processes: CO 2 partial pressure as a novel tool in biorefinery concepts. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:27. [PMID: 36803622 PMCID: PMC9938588 DOI: 10.1186/s13068-023-02262-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 01/05/2023] [Indexed: 02/19/2023]
Abstract
BACKGROUND Elevated CO2 partial pressure (pCO2) has been proposed as a potential steering parameter for selective carboxylate production in mixed culture fermentation. It is anticipated that intermediate product spectrum and production rates, as well as changes in the microbial community, are (in)directly influenced by elevated pCO2. However, it remains unclear how pCO2 interacts with other operational conditions, namely substrate specificity, substrate-to-biomass (S/X) ratio and the presence of an additional electron donor, and what effect pCO2 has on the exact composition of fermentation products. Here, we investigated possible steering effects of elevated pCO2 combined with (1) mixed substrate (glycerol/glucose) provision; (2) subsequent increments in substrate concentration to increase the S/X ratio; and (3) formate as an additional electron donor. RESULTS Metabolite predominance, e.g., propionate vs. butyrate/acetate, and cell density, depended on interaction effects between pCO2-S/X ratio and pCO2-formate. Individual substrate consumption rates were negatively impacted by the interaction effect between pCO2-S/X ratio and were not re-established after lowering the S/X ratio and adding formate. The product spectrum was influenced by the microbial community composition, which in turn, was modified by substrate type and the interaction effect between pCO2-formate. High propionate and butyrate levels strongly correlated with Negativicutes and Clostridia predominance, respectively. After subsequent pressurized fermentation phases, the interaction effect between pCO2-formate enabled a shift from propionate towards succinate production when mixed substrate was provided. CONCLUSIONS Overall, interaction effects between elevated pCO2, substrate specificity, high S/X ratio and availability of reducing equivalents from formate, rather than an isolated pCO2 effect, modified the proportionality of propionate, butyrate and acetate in pressurized mixed substrate fermentations at the expense of reduced consumption rates and increased lag-phases. The interaction effect between elevated pCO2 and formate was beneficial for succinate production and biomass growth with a glycerol/glucose mixture as the substrate. The positive effect may be attributed to the availability of extra reducing equivalents, likely enhanced carbon fixating activity and hindered propionate conversion due to increased concentration of undissociated carboxylic acids.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN, Delft, The Netherlands.
| | - Jo de Vrieze
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Korneel Rabaey
- grid.5342.00000 0001 2069 7798Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium ,grid.510907.aCenter for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Coupure Links 653, 9000 Ghent, Belgium
| | - Jules B. van Lier
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Ralph E. F. Lindeboom
- grid.5292.c0000 0001 2097 4740Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
11
|
Gaio J, Lora NL, Iltchenco J, Magrini FE, Paesi S. Seasonal characterization of the prokaryotic microbiota of full-scale anaerobic UASB reactors treating domestic sewage in southern Brazil. Bioprocess Biosyst Eng 2023; 46:69-87. [PMID: 36401655 DOI: 10.1007/s00449-022-02814-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
Abstract
Upflow Anaerobic Sludge Blanket (UASB) reactors are alternatives in the anaerobic treatment of sanitary sewage in different parts of the world; however, in temperate environments, they are subject to strong seasonal influence. Understanding the dynamics of the microbial community in these systems is essential to propose operational alternatives, improve projects and increase the quality of treated effluents. In this study, for one year, high-performance sequencing, associated with bioinformatics tools for taxonomic annotation and functional prediction was used to characterize the microbial community present in the sludge of biodigesters on full-scale, treating domestic sewage at ambient temperature. Among the most representative phyla stood out Desulfobacterota (20.21-28.64%), Proteobacteria (7.48-24.90%), Bacteroidota (10.05-18.37%), Caldisericota (9.49-17.20%), and Halobacterota (3.23-6.55%). By performing a Canonical Correspondence Analysis (CCA), Methanolinea was correlated to the efficiency in removing Chemical Oxygen Demand (COD), Bacteroidetes_VadinHA17 to the production of volatile fatty acids (VFAs), and CI75cm.2.12 at temperature. On the other hand, Desulfovibrio, Spirochaetaceae_uncultured, Methanosaeta, Lentimicrobiaceae_unclassified, and ADurb.Bin063-1 were relevant in shaping the microbial community in a co-occurrence network. Diversity analyses showed greater richness and evenness for the colder seasons, possibly, due to the lesser influence of dominant taxa. Among the principal metabolic functions associated with the community, the metabolism of proteins and amino acids stood out (7.74-8.00%), and the genes related to the synthesis of VFAs presented higher relative abundance for the autumn and winter. Despite the differences in diversity and taxonomic composition, no significant changes were observed in the efficiency of the biodigesters.
Collapse
Affiliation(s)
- Juliano Gaio
- Molecular Diagnostic Laboratory (LDM), Biotechnology Institute (IB), University of Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070-560, Brazil.
| | - Naline Laura Lora
- Molecular Diagnostic Laboratory (LDM), Biotechnology Institute (IB), University of Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070-560, Brazil
| | - Janaína Iltchenco
- Molecular Diagnostic Laboratory (LDM), Biotechnology Institute (IB), University of Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory (LDM), Biotechnology Institute (IB), University of Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory (LDM), Biotechnology Institute (IB), University of Caxias Do Sul (UCS), Caxias Do Sul, RS, 95070-560, Brazil
| |
Collapse
|
12
|
Hernandez AI, Dos Santos Azevedo R, Werhli AV, Dos Santos Machado K, Nornberg BF, F Marins L. Phylogenetic analysis, computer modeling and catalytic prediction of an Amazonian soil β-glucosidase against a soybean saponin. Integr Biol (Camb) 2022; 14:204-211. [PMID: 36691944 DOI: 10.1093/intbio/zyad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/24/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
Saponins are amphipathic glycosides with detergent properties present in vegetables. These compounds, when ingested, can cause difficulties in absorbing nutrients from food and even induce inflammatory processes in the intestine. There is already some evidence that saponins can be degraded by β-glucosidases of the GH3 family. In the present study, we evaluated, through computational tools, the possibility of a β-glucosidase (AMBGL17) obtained from a metagenomic analysis of the Amazonian soil, to catalytically interact with a saponin present in soybean. For this, the amino acid sequence of AMBGL17 was used in a phylogenetic analysis to estimate its origin and to determine its three-dimensional structure. The 3D structure of the enzyme was used in a molecular docking analysis to evaluate its interaction with soy saponin as a ligand. The results of the phylogenetic analysis showed that AMBGL17 comes from a microorganism of the phylum Chloroflexi, probably related to species of the order Aggregatinales. Molecular docking showed that soybean saponin can interact with the catalytic site of AMBGL17, with the amino acid GLY345 being important in this catalytic interaction, especially with a β-1,2 glycosidic bond present in the carbohydrate portion of saponin. In conclusion, AMBGL17 is an enzyme with interesting biotechnological potential in terms of mitigating the anti-nutritional and pro-inflammatory effects of saponins present in vegetables used for human and animal food.
Collapse
Affiliation(s)
- Andrea I Hernandez
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Raíza Dos Santos Azevedo
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Adriano V Werhli
- Center of Computational Science (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Karina Dos Santos Machado
- Center of Computational Science (C3), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Bruna F Nornberg
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- Laboratory of Molecular Biology, Institute of Biological Sciences (ICB), Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| |
Collapse
|
13
|
Jangid A, Fukuda S, Suzuki Y, Taylor TD, Ohno H, Prakash T. Shotgun metagenomic sequencing revealed the prebiotic potential of a grain-based diet in mice. Sci Rep 2022; 12:6748. [PMID: 35468931 PMCID: PMC9038746 DOI: 10.1038/s41598-022-10762-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
In the present study, we elucidated the effect of grain-based (GB) diet containing both soluble and insoluble fibers and purified ingredients-based (PIB) diet containing only insoluble fiber, namely cellulose on mice gut microbiome using whole shotgun based metagenomic sequencing. Although the fiber content in both diet types is the same (5%) the presence of soluble fiber only in the GB diet differentiates it from the PIB diet. The taxonomic analysis of sequenced reads reveals a significantly higher enrichment of probiotic Lactobacilli in the GB group as compared to the PIB group. Further, the enhancement of energy expensive cellular processes namely, cell cycle control, cell division, chromosome partitioning, and transcription is observed in the GB group which could be due to the metabolization of the soluble fiber for faster energy production. In contrast, a higher abundance of cellulolytic bacterial community namely, the members of family Lachnospiraceae and Ruminococcaceae and the metabolism functions are found in the PIB group. The PIB group shows a significant increase in host-derived oligosaccharide metabolism functions indicating that they might first target the host-derived oligosaccharides and self-stored glycogen in addition to utilising the available cellulose. In addition to the beneficial microbial community variations, both the groups also exhibited an increased abundance of opportunistic pathobionts which could be due to an overall low amount of fiber in the diet. Furthermore, backtracing analysis identified probiotic members of Lactobacillus, viz., L. crispatus ST1, L. fermentum CECT 5716, L. gasseri ATCC 33323, L. johnsonii NCC 533 and L. reuteri 100-23 in the GB group, while Bilophila wadsworthia 3_1_6, Desulfovibrio piger ATCC 29098, Clostridium symbiosum WAL-14163, and Ruminococcaceae bacterium D16 in the PIB group. These data suggest that Lactobacilli, a probiotic community of microorganisms, are the predominant functional contributors in the gut of GB diet-fed mice, whereas pathobionts too coexisted with commensals in the gut microbiome of the PIB group. Thus at 5% fiber, GB modifies the gut microbial ecology more effectively than PIB and the inclusion of soluble fiber in the GB diet may be one of the primary factors responsible for this impact.
Collapse
Affiliation(s)
- Aditi Jangid
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.,Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan.,Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Todd D Taylor
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, 210-0821, Japan
| | - Tulika Prakash
- BioX Centre and School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh, 175005, India. .,Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
14
|
Aoki M, Okubo K, Kusuoka R, Watari T, Syutsubo K, Yamaguchi T. Hexavalent Chromium Removal and Prokaryotic Community Analysis in Glass Column Reactor Packed with Aspen Wood as Solid Organic Substrate. Appl Biochem Biotechnol 2021; 194:1425-1441. [PMID: 34739702 DOI: 10.1007/s12010-021-03738-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
Microbial hexavalent chromium (Cr(VI)) reduction is a promising method for Cr(VI)-laden wastewater treatment. However, the soluble organic substrate required for heterotrophic microbial Cr(VI) reduction necessitates constant supervision, and an excessive supply of soluble organic substrate can result in deterioration of the quality of the effluent. In this study, we evaluated aspen wood, a low-cost lignocellulose biomass, as a solid organic substrate for heterotrophic Cr(VI) reduction. A laboratory-scale aspen wood-packed glass column reactor inoculated with activated sludge was operated for 148 days for evaluation. Following reactor operation, an effective average dissolved Cr(VI) removal rate of 0.75 mg L-1 h-1 was confirmed under an average dissolved Cr(VI) loading rate of 0.90 mg L-1 h-1. Subsequently, 16S ribosomal ribonucleic acid gene amplicon sequencing analysis revealed that the dominant prokaryotic operational taxonomic units detected in the reactor were associated with prokaryotic lineages with the capacity for lignocellulose biodegradation, Cr compound resistance, and Cr(VI) reduction. Proteobacteria and Chloroflexi were two major prokaryotic phyla in the reactor. Our data indicate that aspen wood is an effective solid organic substrate for the development of simplified, effective, and low-cost microbial Cr(VI)-removing reactors.
Collapse
Affiliation(s)
- Masataka Aoki
- Regionl Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan. .,Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan.
| | - Karen Okubo
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Ryoyu Kusuoka
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Kazuaki Syutsubo
- Regionl Environment Conservation Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan.,Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
15
|
Arelli V, Mamindlapelli NK, Juntupally S, Begum S, Anupoju GR. Solid-state anaerobic digestion of sugarcane bagasse at different solid concentrations: Impact of bio augmented cellulolytic bacteria on methane yield and insights on microbial diversity. BIORESOURCE TECHNOLOGY 2021; 340:125675. [PMID: 34333349 DOI: 10.1016/j.biortech.2021.125675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
This study investigated the impact of the potential cellulose degrading bacteria that could be bioaugmented in the solid-state anaerobic digestion (SSAD) of bagasse to enhance the methane yield. The prospective anaerobic cellulose degrading bacteria was isolated from the soil. SSAD experiments were organized with & without bioaugmentation with a substrate total solid (TS) of 25%, 30%, 40% and 50% at an optimized feed to microorganism (F/M) ratio of 1:1. The maximum yield of 0.44 L CH4/ (g VS added) was obtained from bioaugmented bagasse at a TS of 40% whereas it was 0.34 L CH4/(g VS added) for non-bioaugmented bagasse. The isolated bacterial strain was identified that belongs species Pseudomonas of Gamma Proteobacteria which exhibited good cellulolytic activity. Metagenomic studies found 90% of archaeal microorganisms affiliated to Methanosaeta, a strict acetoclastic methanogen.
Collapse
Affiliation(s)
- Vijayalakshmi Arelli
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Naveen Kumar Mamindlapelli
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Sudharshan Juntupally
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
| | - Sameena Begum
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India
| | - Gangagni Rao Anupoju
- Bioengineering and Environmental Sciences (BEES) Group, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad 500007, India; Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
16
|
De Vrieze J, Heyer R, Props R, Van Meulebroek L, Gille K, Vanhaecke L, Benndorf D, Boon N. Triangulation of microbial fingerprinting in anaerobic digestion reveals consistent fingerprinting profiles. WATER RESEARCH 2021; 202:117422. [PMID: 34280807 DOI: 10.1016/j.watres.2021.117422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The anaerobic digestion microbiome has been puzzling us since the dawn of molecular methods for mixed microbial community analysis. Monitoring of the anaerobic digestion microbiome can either take place via a non-targeted holistic evaluation of the microbial community through fingerprinting or by targeted monitoring of selected taxa. Here, we compared four different microbial community fingerprinting methods, i.e., amplicon sequencing, metaproteomics, metabolomics and cytomics, in their ability to characterise the full-scale anaerobic digestion microbiome. Cytometric fingerprinting through cytomics reflects a, for anaerobic digestion, novel, single cell-based approach of direct microbial community fingerprinting by flow cytometry. Three different digester types, i.e., sludge digesters, digesters treating agro-industrial waste and dry anaerobic digesters, each reflected different operational parameters. The α-diversity analysis yielded inconsistent results, especially for richness, across the different methods. In contrast, β-diversity analysis resulted in comparable profiles, even when translated into phyla or functions, with clear separation of the three digester types. In-depth analysis of each method's features i.e., operational taxonomic units, metaproteins, metabolites, and cytometric traits, yielded certain similar features, yet, also some clear differences between the different methods, which was related to the complexity of the anaerobic digestion process. In conclusion, cytometric fingerprinting through flow cytometry is a reliable, fast method for holistic monitoring of the anaerobic digestion microbiome, and the complementary identification of key features through other methods could give rise to a direct interpretation of anaerobic digestion process performance.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium; Division of Soil and Water Management, Department of Earth and Environmental sciences, KU Leuven, Kasteelpark Arenberg 20, PO box 2411, B-3001, Leuven, Belgium; Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, PO box 2424, B-3001, Leuven, Belgium.
| | - Robert Heyer
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Karen Gille
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Dirk Benndorf
- Bioprocess Engineering, Otto von Guericke University, Universitätsplatz 2, 39106, Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106, Magdeburg, Germany; Microbiology, Anhalt University of Applied Sciences, Bernburger Straße 55, 06354, Köthen, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| |
Collapse
|