1
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Dagar J, Maurya S, Antil S, Abraham JS, Somasundaram S, Lal R, Makhija S, Toteja R. Symbionts of Ciliates and Ciliates as Symbionts. Indian J Microbiol 2024; 64:304-317. [PMID: 39010998 PMCID: PMC11246404 DOI: 10.1007/s12088-024-01203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/06/2024] [Indexed: 07/17/2024] Open
Abstract
Endosymbiotic relationships between ciliates and others are critical for their ecological roles, physiological adaptations, and evolutionary implications. These can be obligate and facultative. Symbionts often provide essential nutrients, contribute to the ciliate's metabolism, aid in digestion, and offer protection against predators or environmental stressors. In turn, ciliates provide a protected environment and resources for their symbionts, facilitating their survival and proliferation. Ultrastructural and full-cycle rRNA approaches are utilized to identify these endosymbionts. Fluorescence in situ hybridization using "species- and group-specific probes" which are complementary to the genetic material (DNA or RNA) of a particular species or group of interest represent convenient tools for their detection directly in the environment. A systematic survey of these endosymbionts has been conducted using both traditional and metagenomic approaches. Ciliophora and other protists have a wide range of prokaryotic symbionts, which may contain potentially pathogenic bacteria. Ciliates can establish symbiotic relationships with a variety of hosts also, ranging from protists to metazoans. Understanding ciliate symbiosis can provide useful insights into the complex relationships that drive microbial communities and ecosystems in general.
Collapse
Affiliation(s)
- Jyoti Dagar
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Swati Maurya
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Sandeep Antil
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | | | | | - Rup Lal
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Seema Makhija
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| | - Ravi Toteja
- Acharya Narendra Dev College, University of Delhi, New Delhi, India
| |
Collapse
|
3
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
4
|
Himi E, Miyoshi-Akiyama T, Matsushima Y, Shiono I, Aragane S, Hirano Y, Ikeda G, Kitaura Y, Kobayashi K, Konno D, Morohashi A, Noguchi Y, Ominato Y, Shinbo S, Suzuki N, Takatsuka K, Tashiro H, Yamada Y, Yamashita K, Yoshino N, Kitashima M, Kotani S, Inoue K, Hino A, Hosoya H. Establishment of an unfed strain of Paramecium bursaria and analysis of associated bacterial communities controlling its proliferation. Front Microbiol 2023; 14:1036372. [PMID: 36960277 PMCID: PMC10029143 DOI: 10.3389/fmicb.2023.1036372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/27/2023] [Indexed: 03/09/2023] Open
Abstract
The ciliate Paramecium bursaria harbors several hundred symbiotic algae in its cell and is widely used as an experimental model for studying symbiosis between eukaryotic cells. Currently, various types of bacteria and eukaryotic microorganisms are used as food for culturing P. bursaria; thus, the cultivation conditions are not uniform among researchers. To unify cultivation conditions, we established cloned, unfed strains that can be cultured using only sterile medium without exogenous food. The proliferation of these unfed strains was suppressed in the presence of antibiotics, suggesting that bacteria are required for the proliferation of the unfed strains. Indeed, several kinds of bacteria, such as Burkholderiales, Rhizobiales, Rhodospirillales, and Sphingomonadales, which are able to fix atmospheric nitrogen and/or degrade chemical pollutants, were detected in the unfed strains. The genetic background of the individually cloned, unfed strains were the same, but the proliferation curves of the individual P. bursaria strains were very diverse. Therefore, we selected multiple actively and poorly proliferating individual strains and compared the bacterial composition among the individual strains using 16S rDNA sequencing. The results showed that the bacterial composition among actively proliferating P. bursaria strains was highly homologous but different to poorly proliferating strains. Using unfed strains, the cultivation conditions applied in different laboratories can be unified, and symbiosis research on P. bursaria will make great progress.
Collapse
Affiliation(s)
- Eiko Himi
- Faculty of Agriculture, Kibi International University, Minamiawaji, Hyogo, Japan
| | - Tohru Miyoshi-Akiyama
- Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Yuri Matsushima
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
| | - Iru Shiono
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Seiji Aragane
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yui Hirano
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Gaku Ikeda
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yuki Kitaura
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kyohei Kobayashi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Daichi Konno
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Ayata Morohashi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yui Noguchi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yuka Ominato
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Soma Shinbo
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Naruya Suzuki
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kurama Takatsuka
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Hitomi Tashiro
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Yoki Yamada
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Kenya Yamashita
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Natsumi Yoshino
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Masaharu Kitashima
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
| | - Susumu Kotani
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Kazuhito Inoue
- Department of Biological Sciences, Graduate School of Science, Kanagawa University, Kanagawa, Japan
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Kanagawa, Japan
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Akiya Hino
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
| | - Hiroshi Hosoya
- Research Institute for Integrated Science, Kanagawa University, Kanagawa, Japan
- *Correspondence: Hiroshi Hosoya, ;
| |
Collapse
|
5
|
Characterization of a Pseudokeronopsis Strain (Ciliophora, Urostylida) and Its Bacterial Endosymbiont “Candidatus Trichorickettsia” (Alphaproteobacteria, Rickettsiales). DIVERSITY 2022. [DOI: 10.3390/d14121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symbiotic associations between bacteria and ciliate protists are rather common. In particular, several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but the diversity, features, and interactions in these associations are still poorly understood. In this work, we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny. Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to “Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella, similarly to many, but not all, conspecifics in other host species. These findings highlight the ability of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance of further studies on this system, in particular on flagella and their regulation, from a functional and also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and non-flagellated Rickettsia.
Collapse
|
6
|
Together forever: Inseparable partners of the symbiotic system Paramecium multimicronucleatum/Ca. Trichorickettsia mobilis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
7
|
Melekhin M, Yakovleva Y, Lebedeva N, Nekrasova I, Nikitashina L, Castelli M, Mayén-Estrada R, Romanovich AE, Petroni G, Potekhin A. Cryptic Diversity in Paramecium multimicronucleatum Revealed with a Polyphasic Approach. Microorganisms 2022; 10:microorganisms10050974. [PMID: 35630417 PMCID: PMC9143557 DOI: 10.3390/microorganisms10050974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/01/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Paramecium (Ciliophora) systematics is well studied, and about twenty morphological species have been described. The morphological species may include several genetic species. However, molecular phylogenetic analyses revealed that the species diversity within Paramecium could be even higher and has raised a problem of cryptic species whose statuses remain uncertain. In the present study, we provide the morphological and molecular characterization of two novel Paramecium species. While Paramecium lynni n. sp., although morphologically similar to P. multimicronucleatum, is phylogenetically well separated from all other Paramecium species, Paramecium fokini n. sp. appears to be a cryptic sister species to P. multimicronucleatum. The latter two species can be distinguished only by molecular methods. The number and structure of micronuclei, traditionally utilized to discriminate species in Paramecium, vary not only between but also within each of the three studied species and, thus, cannot be considered a reliable feature for species identification. The geographic distribution of the P. multimicronucleatum and P. fokini n. sp. strains do not show defined patterns, still leaving space for a role of the geographic factor in initial speciation in Paramecium. Future findings of new Paramecium species can be predicted from the molecular data, while morphological characteristics appear to be unstable and overlapping at least in some species.
Collapse
Affiliation(s)
- Maksim Melekhin
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, 199034 Saint Petersburg, Russia
| | - Yulia Yakovleva
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Natalia Lebedeva
- Centre for Culture Collection of Microorganisms, Saint Petersburg State University, 198504 Saint Petersburg, Russia
| | - Irina Nekrasova
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Liubov Nikitashina
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Michele Castelli
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy
| | - Rosaura Mayén-Estrada
- Laboratorio de Protozoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Ext. s/núm. Ciudad Universitaria, Av. Universidad 3000, Coyoacán, Ciudad de Mexico 04510, Mexico
| | - Anna E Romanovich
- Center for Molecular and Cell Technologies, Saint Petersburg State University, 199034 Saint Petersburg, Russia
| | - Giulio Petroni
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, 199034 Saint Petersburg, Russia
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, 199034 Saint Petersburg, Russia
| |
Collapse
|
8
|
Flemming FE, Grosser K, Schrallhammer M. Natural Shifts in Endosymbionts' Occurrence and Relative Frequency in Their Ciliate Host Population. Front Microbiol 2022; 12:791615. [PMID: 35087493 PMCID: PMC8787144 DOI: 10.3389/fmicb.2021.791615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial endosymbionts harbored by heterotrophic Paramecium species is complex. Obligate intracellular bacteria supposedly always inflict costs as the host is the only possible provider of resources. However, several experimental studies have shown that paramecia carrying bacterial endosymbionts can benefit from their infection. Here, we address the question which endosymbionts occur in natural paramecia populations isolated from a small lake over a period of 5 years and which factors might explain observed shifts and persistence in the symbionts occurrence. One hundred and nineteen monoclonal strains were investigated and approximately two-third harbored intracellular bacteria. The majority of infected paramecia carried the obligate endosymbiotic "Candidatus Megaira polyxenophila", followed by Caedimonas varicaedens, and Holospora undulata. The latter was only detected in a single strain. While "Ca. M. polyxenophila" was observed in seven out of 13 samplings, C. varicaedens presence was limited to a single sampling occasion. After the appearance of C. varicaedens, "Ca. M. polyxenophila" prevalence dramatically dropped with some delay but recovered to original levels at the end of our study. Potential mechanisms explaining these observations include differences in infectivity, host range, and impact on host fitness as well as host competitive capacities. Growth experiments revealed fitness advantages for infected paramecia harboring "Ca. M. polyxenophila" as well as C. varicaedens. Furthermore, we showed that cells carrying C. varicaedens gain a competitive advantage from the symbiosis-derived killer trait. Other characteristics like infectivity and overlapping host range were taken into consideration, but the observed temporal persistence of "Ca. M. polyxenophila" is most likely explained by the positive effect this symbiont provides to its host.
Collapse
Affiliation(s)
- Felicitas E. Flemming
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|