1
|
Heidari Latibari M, Moravvej G, Rakhshani E, Karimi J, Arias-Penna DC, Butcher BA. Arsenophonus: A Double-Edged Sword of Aphid Defense against Parasitoids. INSECTS 2023; 14:763. [PMID: 37754731 PMCID: PMC10531911 DOI: 10.3390/insects14090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
It is widely accepted that endosymbiont interactions with their hosts have significant effects on the fitness of both pests and beneficial species. A particular type of endosymbiosis is that of beneficial associations. Facultative endosymbiotic bacteria are associated with elements that provide aphids with protection from parasitoids. Arsenophonus (Enterobacterales: Morganellaceae) is one such endosymbiont bacterium, with infections being most commonly found among the Hemiptera species. Here, black cowpea aphids (BCAs), Aphis craccivora Koch (Hemiptera: Aphididae), naturally infected with Arsenophonus, were evaluated to determine the defensive role of this bacterium in BCAs against two parasitoid wasp species, Binodoxys angelicae and Lysiphlebus fabarum (both in Braconidae: Aphidiinae). Individuals of the black cowpea aphids infected with Arsenophonus were treated with a blend of ampicillin, cefotaxime, and gentamicin (Arsenophonus-reduced infection, AR) and subsequently subjected to parasitism assays. The results showed that the presence of Arsenophonus does not prevent BCAs from being parasitized by either B. angelicae or L. fabarum. Nonetheless, in BCA colonies parasitized by B. angelicae, the endosymbiont delayed both the larval maturation period and the emergence of the adult parasitoid wasps. In brief, Arsenophonus indirectly limits the effectiveness of B. angelicae parasitism by decreasing the number of emerged adult wasps. Therefore, other members of the BCA colony can survive. Arsenophonus acts as a double-edged sword, capturing the complex dynamic between A. craccivora and its parasitoids.
Collapse
Affiliation(s)
- Minoo Heidari Latibari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Gholamhossein Moravvej
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | - Ehsan Rakhshani
- Department of Plant Protection, Faculty of Agriculture, University of Zabol, Zabol P.O. Box 538-98615, Iran;
| | - Javad Karimi
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad P.O. Box 91779-48974, Iran; (M.H.L.); (J.K.)
| | | | - Buntika A. Butcher
- Integrative Insect Ecology Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Shropshire JD, Hamant E, Conner WR, Cooper BS. cifB-transcript levels largely explain cytoplasmic incompatibility variation across divergent Wolbachia. PNAS NEXUS 2022; 1:pgac099. [PMID: 35967981 PMCID: PMC9364212 DOI: 10.1093/pnasnexus/pgac099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023]
Abstract
Divergent hosts often associate with intracellular microbes that influence their fitness. Maternally transmitted Wolbachia bacteria are the most common of these endosymbionts, due largely to cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-infected males. Closely related infections in females rescue CI, providing a relative fitness advantage that drives Wolbachia to high frequencies. One prophage-associated gene (cifA) governs rescue, and two contribute to CI (cifA and cifB), but CI strength ranges from very strong to very weak for unknown reasons. Here, we investigate CI-strength variation and its mechanistic underpinnings in a phylogenetic context across 20 million years (MY) of Wolbachia evolution in Drosophila hosts diverged up to 50 MY. These Wolbachia encode diverse Cif proteins (100% to 7.4% pairwise similarity), and AlphaFold structural analyses suggest that CifB sequence similarities do not predict structural similarities. We demonstrate that cifB-transcript levels in testes explain CI strength across all but two focal systems. Despite phylogenetic discordance among cifs and the bulk of the Wolbachia genome, closely related Wolbachia tend to cause similar CI strengths and transcribe cifB at similar levels. This indicates that other non-cif regions of the Wolbachia genome modulate cif-transcript levels. CI strength also increases with the length of the host's larval life stage, presumably due to prolonged cif action. Our findings reveal that cifB-transcript levels largely explain CI strength, while highlighting other covariates. Elucidating CI's mechanism contributes to our understanding of Wolbachia spread in natural systems and to improving the efficacy of CI-based biocontrol of arboviruses and agricultural pests globally.
Collapse
Affiliation(s)
| | - Emily Hamant
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - William R Conner
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Brandon S Cooper
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Doremus MR, Stouthamer CM, Kelly SE, Schmitz-Esser S, Hunter MS. Quality over quantity: unraveling the contributions to cytoplasmic incompatibility caused by two coinfecting Cardinium symbionts. Heredity (Edinb) 2022; 128:187-195. [PMID: 35124699 PMCID: PMC8897438 DOI: 10.1038/s41437-022-00507-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Cytoplasmic incompatibility (CI) is a common form of reproductive sabotage caused by maternally inherited bacterial symbionts of arthropods. CI is a two-step manipulation: first, the symbiont modifies sperm in male hosts which results in the death of fertilized, uninfected embryos. Second, when females are infected with a compatible strain, the symbiont reverses sperm modification in the fertilized egg, allowing offspring of infected females to survive and spread the symbiont to high frequencies in a population. Although CI plays a role in arthropod evolution, the mechanism of CI is unknown for many symbionts. Cardinium hertigii is a common CI-inducing symbiont of arthropods, including parasitoid wasps like Encarsia partenopea. This wasp harbors two Cardinium strains, cEina2 and cEina3, and exhibits strong CI. The strains infect wasps at different densities, with the cEina3 present at a lower density than cEina2, and it was previously not known which strain caused CI. By differentially curing wasps of cEina3, we found that this low-density symbiont is responsible for CI and modifies males during their pupal stage. cEina2 does not modify host reproduction and may spread by 'hitchhiking' with cEina3 CI or by conferring an unknown benefit. The cEina3 strain also shows a unique localization pattern in male reproductive tissues. Instead of infecting sperm like other CI-inducing symbionts, cEina3 cells are found in somatic cells at the testis base and around the seminal vesicle. This may allow the low-density cEina3 to efficiently modify host males and suggests that cEina3 uses a different modification strategy than sperm-infecting CI symbionts.
Collapse
Affiliation(s)
- Matthew R. Doremus
- grid.134563.60000 0001 2168 186XGraduate Interdisciplinary Program in Entomology & Insect Science, The University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Corinne M. Stouthamer
- grid.213876.90000 0004 1936 738XDepartment of Entomology, The University of Georgia, Athens, GA 30602 USA
| | - Suzanne E. Kelly
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| | - Stephan Schmitz-Esser
- grid.34421.300000 0004 1936 7312Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| | - Martha S. Hunter
- grid.134563.60000 0001 2168 186XDepartment of Entomology, The University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
4
|
Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way. Heredity (Edinb) 2022; 128:169-177. [PMID: 35115648 PMCID: PMC8897473 DOI: 10.1038/s41437-022-00505-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 11/08/2022] Open
Abstract
Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts.
Collapse
|
5
|
Nasehi SF, Fathipour Y, Asgari S, Mehrabadi M. Environmental Temperature, but Not Male Age, Affects Wolbachia and Prophage WO Thereby Modulating Cytoplasmic Incompatibility in the Parasitoid Wasp, Habrobracon Hebetor. MICROBIAL ECOLOGY 2022; 83:482-491. [PMID: 33969432 DOI: 10.1007/s00248-021-01768-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Wolbachia is an endosymbiotic bacterium found in many species of arthropods and manipulates its host reproduction. Cytoplasmic incompatibility (CI) is one of the most common manipulations that is induced when an uninfected female mates with a Wolbachia-infected male. The CI factors (cifA and cifB genes) are encoded by phage WO that naturally infects Wolbachia. Here, we questioned whether an environmental factor (temperature) or host factor (male age) affected the strength of the CI phenotype in the ectoparasitoid wasp, Habrobracon hebetor. We found that temperature, but not male age, results in reduced CI penetrance. Consistent with these results, we also found that the expression of the cif CI factors decreased in temperature-exposed males but was consistent across aging male wasps. Similar to studies of other insect systems, cifA showed a higher expression level than cifB, and male hosts showed increased cif expression relative to females. Our results suggest that prophage WO is present in the Wolbachia-infected wasps and expression of cif genes contributes to the induction of CI in this insect. It seems that male aging has no effect on the intensity of CI; however, temperature affects Wolbachia and prophage WO titers as well as expression levels of cif genes, which modulate the CI level.
Collapse
Affiliation(s)
- Seyede Fatemeh Nasehi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Konecka E. Fifty shades of bacterial endosymbionts and some of them still remain a mystery: Wolbachia and Cardinium in oribatid mites (Acari: Oribatida). J Invertebr Pathol 2022; 189:107733. [DOI: 10.1016/j.jip.2022.107733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
|
7
|
Male Age and Wolbachia Dynamics: Investigating How Fast and Why Bacterial Densities and Cytoplasmic Incompatibility Strengths Vary. mBio 2021; 12:e0299821. [PMID: 34903056 PMCID: PMC8686834 DOI: 10.1128/mbio.02998-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Endosymbionts can influence host reproduction and fitness to favor their maternal transmission. For example, endosymbiotic Wolbachia bacteria often cause cytoplasmic incompatibility (CI) that kills uninfected embryos fertilized by Wolbachia-modified sperm. Infected females can rescue CI, providing them a relative fitness advantage. Wolbachia-induced CI strength varies widely and tends to decrease as host males age. Since strong CI drives Wolbachia to high equilibrium frequencies, understanding how fast and why CI strength declines with male age is crucial to explaining age-dependent CI’s influence on Wolbachia prevalence. Here, we investigate if Wolbachia densities and/or CI gene (cif) expression covary with CI-strength variation and explore covariates of age-dependent Wolbachia-density variation in two classic CI systems. wRi CI strength decreases slowly with Drosophila simulans male age (6%/day), but wMel CI strength decreases very rapidly (19%/day), yielding statistically insignificant CI after only 3 days of Drosophila melanogaster adult emergence. Wolbachia densities and cif expression in testes decrease as wRi-infected males age, but both surprisingly increase as wMel-infected males age, and CI strength declines. We then tested if phage lysis, Octomom copy number (which impacts wMel density), or host immune expression covary with age-dependent wMel densities. Only host immune expression correlated with density. Together, our results identify how fast CI strength declines with male age in two model systems and reveal unique relationships between male age, Wolbachia densities, cif expression, and host immunity. We discuss new hypotheses about the basis of age-dependent CI strength and its contributions to Wolbachia prevalence.
Collapse
|