1
|
Zheng J, Shi J, Wang D. Diversity of soil fungi and entomopathogenic fungi in subtropical mountain forest in southwest China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13267. [PMID: 38943366 PMCID: PMC11213981 DOI: 10.1111/1758-2229.13267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/06/2024] [Indexed: 07/01/2024]
Abstract
Till now, the diversity of entomopathogenic fungi in subtropical mountain forest was less studied. Here, the vertical distribution of forest soil fungi, entomopathogenic fungi, and their environmental influencing factors in a subtropical mountain in western China were investigated. Soil samples were collected from four elevations in a subtropical forest in Shaanxi. The results indicated a greater richness of soil fungi at middle elevations and soil fungi were more even at low elevation. Soil pH, available iron, available potassium, total potassium, and available zinc were the most important influencing factors affecting this vertical distribution of fungi. Interestingly, the Isaria genus was predominant while Metarhizium and Beauveria showed decreasing abundance. The presence of Isaria showed a significant positive correlation with both total phosphorus and available iron, while, available zinc was negatively correlated. Metarhizium was influenced by elevation, pH, available phosphorus, and available copper and Beauveria was influenced by soil organic carbon, total nitrogen, total potassium, available potassium, and available zinc. Overall, as environmental factors affecting soil fungi, elevation, and plant species diversity were less important than soil physical and chemical properties. The virulence of isolated entomopathogenic fungi were tested against larvae of Tenebrio molitor, with mortality ranging from 31.11% to 100%. The above findings provide valuable data to deepen our understanding of the diversity of entomopathogenic fungi in subtropical mountain forests.
Collapse
Affiliation(s)
- Jiyang Zheng
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Jinduo Shi
- Forest Bureau of Ankang CityAnkangShaanxiChina
| | - Dun Wang
- Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
2
|
Peng XC, Wen TC, Wei DP, Liao YH, Wang Y, Zhang X, Wang GY, Zhou Y, Tangtrakulwanich K, Liang JD. Two new species and one new combination of Ophiocordyceps (Hypocreales, Ophiocordycipitaceae) in Guizhou. MycoKeys 2024; 102:245-266. [PMID: 38463694 PMCID: PMC10921062 DOI: 10.3897/mycokeys.102.113351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/27/2024] [Indexed: 03/12/2024] Open
Abstract
Ophiocordyceps is the largest genus in Ophiocordycipitaceae and has a broad distribution with high diversity in subtropical and tropical regions. In this study, two new species, pathogenic on lepidopteran larvae are introduced, based on morphological observation and molecular phylogeny. Ophiocordycepsfenggangensissp. nov. is characterised by having fibrous, stalked stroma with a sterile tip, immersed perithecia, cylindrical asci and filiform ascospores disarticulating into secondary spores. Ophiocordycepsliangiisp. nov. has the characteristics of fibrous, brown, stipitate, filiform stroma, superficial perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores. A new combination Ophiocordycepsmusicaudata (syn. Cordycepsmusicaudata) is established employing molecular analysis and morphological characteristics. Ophiocordycepsmusicaudata is characterised by wiry, stipitate, solitary, paired to multiple stromata, yellowish, branched fertile part, brown stipe, immersed perithecia, cylindrical asci and cylindrical-filiform, non-disarticulating ascospores.
Collapse
Affiliation(s)
- Xing-Can Peng
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Ting-Chi Wen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - De-Ping Wei
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yu-Hong Liao
- School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Guizhou Key Laboratory of Edible Fungi Breeding, Guiyang 550006, China
| | - Yi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xian Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Gui-Ying Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yun Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Khanobporn Tangtrakulwanich
- Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jian-Dong Liang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang 550002, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
3
|
Xiao YP, Yang Y, Jayawardena RS, Gentekaki E, Peng XC, Luo ZL, Lu YZ. Four novel Pleurocordyceps (Polycephalomycetaceae) species from China. Front Microbiol 2024; 14:1256967. [PMID: 38268701 PMCID: PMC10807425 DOI: 10.3389/fmicb.2023.1256967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024] Open
Abstract
Entomopathogenic fungi comprise an ecologically important group of specialized pathogens infecting other fungi, invertebrates, and plants. These fungi are species-rich with high diversity and broad distribution worldwide. The majority of entomopathogenic fungi belong to clavicipitoids, which consist of the hypocrealean families, Clavicipitaceae, Cordycipitaceae, Ophiocordycipitaceae, and Polycephalomycetaceae. The latter is a newly established entomopathogenic family that recently separated from the family Ophiocordycipitaceae to accommodate the genera, Perennicordyceps, Pleurocordyceps, and Polycephalomyces. In recent years, Polycephalomycetaceae has been enriched with parasitic and hyperparasitic fungi. With 16 species spread across China, Ecuador, Japan, and Thailand, Pleurocordyceps is the most speciose genus in the family. In this study, we expand the number of taxa in the genus by introducing four new Pleurocordyceps species from China, namely, P. clavisynnema, P. multisynnema, P. neoagarica, and P. sanduensis. We provide detailed descriptions and illustrations and infer genus-level phylogenies based on a combined 6-loci gene sequence dataset comprising the internal transcribed spacer gene region (ITS), small subunit ribosomal RNA gene region (SSU), large subunit rRNA gene region (LSU), translation elongation factor 1-alpha gene region (TEF-1α), RNA polymerase II largest subunit gene region (RPB1), and RNA polymerase II second largest subunit (RPB2). This study contributes to knowledge with regard to the diversity of Pleurocordyceps specifically and entomopathogenic Hypocreales more broadly.
Collapse
Affiliation(s)
- Yuan-Pin Xiao
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
| | - Yu Yang
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Eleni Gentekaki
- University of Nicosia School of Veterinary Medicine, Nicosia, Cyprus
| | - Xing-Can Peng
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, Thailand
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China
| | - Zong-Long Luo
- College of Agriculture and Biological Sciences, Dali University, Dali, China
| | - Yong-Zhong Lu
- School of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, China
- Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, China
| |
Collapse
|
4
|
Tehan RM, Dooley CB, Barge EG, McPhail KL, Spatafora JW. New species and new combinations in the genus Paraisaria (Hypocreales, Ophiocordycipitaceae) from the U.S.A., supported by polyphasic analysis. MycoKeys 2023; 100:69-94. [PMID: 38025585 PMCID: PMC10660154 DOI: 10.3897/mycokeys.100.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular phylogenetic and chemical analyses, and morphological characterization of collections of North American Paraisaria specimens support the description of two new species and two new combinations for known species. P.cascadensissp. nov. is a pathogen of Cyphoderris (Orthoptera) from the Pacific Northwest USA and P.pseudoheteropodasp. nov. is a pathogen of cicadae (Hemiptera) from the Southeast USA. New combinations are made for Ophiocordycepsinsignis and O.monticola based on morphological, ecological, and chemical study. A new cyclopeptide family proved indispensable in providing chemotaxonomic markers for resolving species in degraded herbarium specimens for which DNA sequencing is intractable. This approach enabled the critical linkage of a 142-year-old type specimen to a phylogenetic clade. The diversity of Paraisaria in North America and the utility of chemotaxonomy for the genus are discussed.
Collapse
Affiliation(s)
- Richard M. Tehan
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
- Department of Chemistry and Biochemistry, Utica University, Utica, New York 13502, USA
| | - Connor B. Dooley
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | - Edward G. Barge
- Department of Botany and Plant Pathology, College of Agricultural and Life Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | - Joseph W. Spatafora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
5
|
Multi-gene phylogeny and morphology of Ophiocordyceps laotii sp. nov. and a new record of O. buquetii (Ophiocordycipitaceae, Hypocreales) on ants from Thailand. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Xu XL, Zeng Q, Lv YC, Jeewon R, Maharachchikumbura SSN, Wanasinghe DN, Hyde KD, Xiao QG, Liu YG, Yang CL. Insight into the Systematics of Novel Entomopathogenic Fungi Associated with Armored Scale Insect, Kuwanaspis howardi (Hemiptera: Diaspididae) in China. J Fungi (Basel) 2021; 7:jof7080628. [PMID: 34436167 PMCID: PMC8401669 DOI: 10.3390/jof7080628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study led to the discovery of three entomopathogenic fungi associated with Kuwanaspis howardi, a scale insect on Phyllostachys heteroclada (fishscale bamboo) and Pleioblastus amarus (bitter bamboo) in China. Two of these species belong to Podonectria: P. kuwanaspidis X.L. Xu & C.L. Yang sp. nov. and P. novae-zelandiae Dingley. The new species P. kuwanaspidis has wider and thicker setae, longer and wider asci, longer ascospores, and more septa as compared with similar Podonectria species. The morphs of extant species P. novae-zelandiae is confirmed based on sexual and asexual morphologies. Maximum likelihood and Bayesian inference analyses of ITS, LSU, SSU, tef1-α, and rpb2 sequence data provide further evidence for the validity of the two species and their placement in Podonectriaceae (Pleosporales). The second new species, Microcera kuwanaspidis X.L. Xu & C.L. Yang sp. nov., is established based on DNA sequence data from ITS, LSU, SSU, tef1-α, rpb1, rpb2, acl1, act, cmdA, and his3 gene regions, and it is characterized by morphological differences in septum numbers and single conidial mass.
Collapse
Affiliation(s)
- Xiu-Lan Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
- Research Institute of Forestry, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China;
| | - Qian Zeng
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Cong Lv
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Rajesh Jeewon
- Department of Health Sciences, Faculty of Medicine and Health Sciences, University of Mauritius, Reduit 80837, Mauritius;
| | | | - Dhanushka N. Wanasinghe
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 649201, China;
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Qian-Gang Xiao
- Research Institute of Forestry, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu 611130, China;
| | - Ying-Gao Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun-Lin Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China; (X.-L.X.); (Q.Z.); (Y.-C.L.); (Y.-G.L.)
- Sichuan Province Key Laboratory of Ecological Forestry Engineering on the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|