1
|
Li Y, Chen J, Lin Y, Zhong C, Jing H, Liu H. Thaumarchaeota from deep-sea methane seeps provide novel insights into their evolutionary history and ecological implications. MICROBIOME 2024; 12:197. [PMID: 39385283 PMCID: PMC11463064 DOI: 10.1186/s40168-024-01912-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/19/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Ammonia-oxidizing archaea (AOA) of the phylum Thaumarchaeota mediate the rate-limiting step of nitrification and remove the ammonia that inhibits the aerobic metabolism of methanotrophs. However, the AOA that inhabit deep-sea methane-seep surface sediments (DMS) are rarely studied. Here, we used global DMS metagenomics and metagenome-assembled genomes (MAGs) to investigate the metabolic activity, evolutionary history, and ecological contributions of AOA. Expression of AOA-specific ammonia-oxidizing gene (amoA) was examined in the sediments collected from the South China Sea (SCS) to identify their active ammonia metabolism in the DMS. RESULTS Our analysis indicated that AOA contribute > 75% to the composition of ammonia-utilization genes within the surface layers (above 30 cm) of global DMS. The AOA-specific ammonia-oxidizing gene was actively expressed in the DMS collected from the SCS. Phylogenomic analysis of medium-/high-quality MAGs from 18 DMS-AOA indicated that they evolved from ancestors in the barren deep-sea sediment and then expanded from the DMS to shallow water forming an amoA-NP-gamma clade-affiliated lineage. Molecular dating suggests that the DMS-AOA origination coincided with the Neoproterozoic oxidation event (NOE), which occurred ~ 800 million years ago (mya), and their expansion to shallow water coincided with the Sturtian glaciation (~ 713 mya). Comparative genomic analysis suggests that DMS-AOA exhibit higher requirement of carbon source for protein synthesis with enhanced genomic capability for osmotic regulation, motility, chemotaxis, and utilization of exogenous organic compounds, suggesting it could be more heterotrophic compared with other lineages. CONCLUSION Our findings provide new insights into the evolutionary history of AOA within the Thaumarchaeota, highlighting their critical roles in nitrogen cycling in the global DMS ecosystems. Video Abstract.
Collapse
Affiliation(s)
- Yingdong Li
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Jiawei Chen
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanxun Lin
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Cheng Zhong
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Hongbin Liu
- Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
2
|
Jiang Q, Jing H, Li X, Wan Y, Chou IM, Hou L, Dong H, Niu Y, Gao D. Active pathways of anaerobic methane oxidization in deep-sea cold seeps of the South China Sea. Microbiol Spectr 2023; 11:e0250523. [PMID: 37916811 PMCID: PMC10715046 DOI: 10.1128/spectrum.02505-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Cold seeps occur in continental margins worldwide and are deep-sea oases. Anaerobic oxidation of methane is an important microbial process in the cold seeps and plays an important role in regulating methane content. This study elucidates the diversity and potential activities of major microbial groups in dependent anaerobic methane oxidation and sulfate-dependent anaerobic methane oxidation processes and provides direct evidence for the occurrence of nitrate-/nitrite-dependent anaerobic methane oxidation (Nr-/N-DAMO) as a previously overlooked microbial methane sink in the hydrate-bearing sediments of the South China Sea. This study provides direct evidence for occurrence of Nr-/N-DAMO as an important methane sink in the deep-sea cold seeps.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China
- HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China
| | - Xuegong Li
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Ye Wan
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - I-Ming Chou
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Hongpo Dong
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Yuhui Niu
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| | - Dengzhou Gao
- State Key Laboratory of Estuarine and Costal Research, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Zhang T, He W, Liang Q, Zheng F, Xiao X, Zeng Z, Zhou J, Yao W, Chen H, Zhu Y, Zhao J, Zheng Y, Zhang C. Lipidomic diversity and proxy implications of archaea from cold seep sediments of the South China Sea. Front Microbiol 2023; 14:1241958. [PMID: 37954235 PMCID: PMC10635418 DOI: 10.3389/fmicb.2023.1241958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Cold seeps on the continental margins are characterized by intense microbial activities that consume a large portion of methane by anaerobic methanotrophic archaea (ANME) through anaerobic oxidation of methane (AOM). Although ANMEs are known to contain unique ether lipids that may have an important function in marine carbon cycling, their full lipidomic profiles and functional distribution in particular cold-seep settings are still poorly characterized. Here, we combined the 16S rRNA gene sequencing and lipidomic approaches to analyze archaeal communities and their lipids in cold seep sediments with distinct methane supplies from the South China Sea. The archaeal community was dominated by ANME-1 in the moderate seepage area with strong methane emission. Low seepage area presented higher archaeal diversity covering Lokiarchaeia, Bathyarchaeia, and Thermoplasmata. A total of 55 core lipids (CLs) and intact polar lipids (IPLs) of archaea were identified, which included glycerol dialkyl glycerol tetraethers (GDGTs), hydroxy-GDGTs (OH-GDGTs), archaeol (AR), hydroxyarchaeol (OH-AR), and dihydroxyarchaeol (2OH-AR). Diverse polar headgroups constituted the archaeal IPLs. High concentrations of dissolved inorganic carbon (DIC) with depleted δ13CDIC and high methane index (MI) values based on both CLs (MICL) and IPLs (MIIPL) indicate that ANMEs were active in the moderate seepage area. The ANME-2 and ANME-3 clades were characterized by enhanced glycosidic and phosphoric diether lipids production, indicating their potential role in coupling carbon and phosphurus cycling in cold seep ecosystems. ANME-1, though representing a smaller proportion of total archaea than ANME-2 and ANME-3 in the low seepage area, showed a positive correlation with MIIPL, indicating a different mechanism contributing to the IPL-GDGT pool. This also suggests that MIIPL could be a sensitive index to trace AOM activities performed by ANME-1. Overall, our study expands the understanding of the archaeal lipid composition in the cold seep and improves the application of MI using intact polar lipids that potentially link to extent ANME activities.
Collapse
Affiliation(s)
- Tingting Zhang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
- East China Sea Ecological Center, Ministry of Natural Resources, Shanghai, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Qianyong Liang
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fengfeng Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xi Xiao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
- National Engineering Research Center of Gas Hydrate Exploration and Development, Guangzhou, China
| | - Zhiyu Zeng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jingzhuo Zhou
- Key Laboratory of Coal Processing and Efficient Utilization of Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, China
| | - Wenyong Yao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Haodong Chen
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanqing Zhu
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| | - Jing Zhao
- Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou, China
| | - Yan Zheng
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Shanghai Sheshan National Geophysical Observatory, Shanghai, China
| |
Collapse
|
4
|
Jiang Q, Jing H, Liu H, Du M. Biogeographic distributions of microbial communities associated with anaerobic methane oxidation in the surface sediments of deep-sea cold seeps in the South China Sea. Front Microbiol 2022; 13:1060206. [PMID: 36620029 PMCID: PMC9822730 DOI: 10.3389/fmicb.2022.1060206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Cold seeps are oasis for the microbes in the deep-sea ecosystems, and various cold seeps are located along the northern slope of the South China Sea (SCS). However, by far most microbial ecological studies were limited to specific cold seep in the SCS, and lack of comparison between different regions. Here, the surface sediments (0-4 cm) from the Site F/Haima cold seeps and the Xisha trough in the SCS were used to elucidate the biogeography of microbial communities, with particular interest in the typical functional groups involved in the anaerobic oxidation of methane (AOM) process. Distinct microbial clusters corresponding to the three sampling regions were formed, and significantly higher gene abundance of functional groups were present in the cold seeps than the trough. This biogeographical distribution could be explained by the geochemical characteristics of sediments, such as total nitrogen (TN), total phosphorus (TP), nitrate (NO3 -), total sulfur (TS) and carbon to nitrogen ratios (C/N). Phylogenetic analysis demonstrated that mcrA and pmoA genotypes were closely affiliated with those from wetland and mangroves, where denitrifying anaerobic methane oxidation (DAMO) process frequently occurred; and highly diversified dsrB genotypes were revealed as well. In addition, significantly higher relative abundance of NC10 group was found in the Xisha trough, suggesting that nitrite-dependent DAMO (N-DAMO) process was more important in the hydrate-bearing trough, although its potential ecological contribution to AOM deserves further investigation. Our study also further demonstrated the necessity of combining functional genes and 16S rRNA gene to obtain a comprehensive picture of the population shifts of natural microbial communities among different oceanic regions.
Collapse
Affiliation(s)
- Qiuyun Jiang
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,University of Chinese Academy of Sciences, Beijing, China
| | - Hongmei Jing
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China,HKUST-CAS Sanya Joint Laboratory of Marine Science Research, Chinese Academy of Sciences, Sanya, China,Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China,*Correspondence: Hongmei Jing,
| | - Hao Liu
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Mengran Du
- CAS Key Laboratory for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| |
Collapse
|
5
|
Cold Seeps on the Passive Northern U.S. Atlantic Margin Host Globally Representative Members of the Seep Microbiome with Locally Dominant Strains of Archaea. Appl Environ Microbiol 2022; 88:e0046822. [PMID: 35607968 DOI: 10.1128/aem.00468-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Marine cold seeps are natural sites of methane emission and harbor distinct microbial communities capable of oxidizing methane. The majority of known cold seeps are on tectonically active continental margins, but recent discoveries have revealed abundant seeps on passive margins as well, including on the U.S. Atlantic Margin (USAM). We sampled in and around four USAM seeps and combined pore water geochemistry measurements with amplicon sequencing of 16S rRNA and mcrA (DNA and RNA) to investigate the microbial communities present, their assembly processes, and how they compare to communities at previously studied sites. We found that the USAM seeps contained communities consistent with the canonical seep microbiome at the class and order levels but differed markedly at the sequence variant level, especially within the anaerobic methanotrophic (ANME) archaea. The ANME populations were highly uneven, with just a few dominant mcrA sequence variants at each seep. Interestingly, the USAM seeps did not form a distinct phylogenetic cluster when compared with other previously described seeps around the world. Consistent with this, we found only a very weak (though statistically significant) distance-decay trend in seep community similarity across a global data set. Ecological assembly indices suggest that the USAM seep communities were assembled primarily deterministically, in contrast to the surrounding nonseep sediments, where stochastic processes dominated. Together, our results suggest that the primary driver of seep microbial community composition is local geochemistry-specifically methane, sulfide, nitrate, acetate, and ammonium concentrations-rather than the geologic context, the composition of nearby seeps, or random events of dispersal. IMPORTANCE Cold seeps are now known to be widespread features of passive continental margins, including the northern U.S. Atlantic Margin (USAM). Methane seepage is expected to intensify at these relatively shallow seeps as bottom waters warm and underlying methane hydrates dissociate. While methanotrophic microbial communities might reduce or prevent methane release, microbial communities on passive margins have rarely been characterized. In this study, we investigated the Bacteria and Archaea at four cold seeps on the northern USAM and found that despite being colocated on the same continental slope, the communities significantly differ by site at the sequence variant level, particularly methane-cycling community members. Differentiation by site was not observed in similarly spaced background sediments, raising interesting questions about the dispersal pathways of cold seep microorganisms. Understanding the genetic makeup of these discrete seafloor ecosystems and how their microbial communities develop will be increasingly important as the climate changes.
Collapse
|
6
|
Chen Y, Xu C, Wu N, Sun Z, Liu C, Zhen Y, Xin Y, Zhang X, Geng W, Cao H, Zhai B, Li J, Qin S, Zhou Y. Diversity of Anaerobic Methane Oxidizers in the Cold Seep Sediments of the Okinawa Trough. Front Microbiol 2022; 13:819187. [PMID: 35495656 PMCID: PMC9048799 DOI: 10.3389/fmicb.2022.819187] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
Active cold seeps in the Okinawa Trough (OT) have been widely identified, but the sediment microbial communities associated with these sites are still poorly understood. Here, we investigated the distribution and biomass of the microbial communities, particularly those associated with the anaerobic oxidation of methane (AOM), in sediments from an active cold seep in the mid-Okinawa Trough. Methane-oxidizing archaea, including ANME-1a, ANME-1b, ANME-2a/b, ANME-2c, and ANME-3, were detected in the OT cold seep sediments. Vertical stratification of anaerobic methanotrophic archaea (ANME) communities was observed in the following order: ANME-3, ANME-1a, and ANME-1b. In addition, the abundance of methyl coenzyme M reductase A (mcrA) genes corresponded to high levels of dissolved iron, suggesting that methane-metabolizing archaea might participate in iron reduction coupled to methane oxidation (Fe-AOM) in the OT cold seep. Furthermore, the relative abundance of ANME-1a was strongly related to the concentration of dissolved iron, indicating that ANME-1a is a key microbial player for Fe-AOM in the OT cold seep sediments. Co-occurrence analysis revealed that methane-metabolizing microbial communities were mainly associated with heterotrophic microorganisms, such as JS1, Bathy-1, and Bathy-15.
Collapse
Affiliation(s)
- Ye Chen
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Cuiling Xu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
- *Correspondence: Nengyou Wu,
| | - Zhilei Sun
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Zhilei Sun,
| | - Changling Liu
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Zhen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Youzhi Xin
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xilin Zhang
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wei Geng
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hong Cao
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bin Zhai
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Li
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shuangshuang Qin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, China
| | - Yucheng Zhou
- Key Laboratory of Gas Hydrate, Qingdao Institute of Marine Geology, Ministry of Natural Resources, Qingdao, China
- Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|