1
|
Malik N, Ahmad M, Malik Z, Hussain A, Waseem M, Ali A, Rizwan M. Isolation and characterization of chromium-resistant bacteria and their effects on germination, growth, and Cr accumulation in Capsicum annum (L.) under Cr stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108955. [PMID: 39053317 DOI: 10.1016/j.plaphy.2024.108955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Chromium (Cr) is a well-known environmental pollutant while less information is available on the role of Cr-resistant bacteria in the alleviation of Cr-stress in chili (Capsicum annum L.) plants. Effect of Cr-resistant bacterial strains on growth and Cr uptake by chili plants was investigated. The results revealed that Cr-stress showed a negative effect on germination, photosynthesis, and relative water content but the inoculation ameliorated the plant stress. Chromium-resistant bacterial strains enhanced the shoot and root growth (33% SL, 19.7% RL), shoot and root dry weight (35%, 32.9%), relative water content (32.25%), membrane stability index (46.52%) SPAD value (50.76%), Cr concentration in shoots and roots (19.87 and 18.52 mg kg-1), bioaccumulation and translocation factor (0.396 mgkg-1), and seedling vigor index (40.8%) of plants. Chromium-resistant bacterial strains enhanced the NPK uptake while reduced Cr uptake by plants. The morphological and biochemical examination of rhizobacterial strains (and NM28) resistant to Cr-stress revealed smooth, off-white colonies of bacteria composed of rod-shaped cells which are Gram positive in reaction while negative in catalase activity. High quantities of malic acid were produced by bacterial strains under study i.e. NM8 (926.12 μgmL-2) and NM28 (992.25 μgmL-2). These strains were identified as Bacillus cereus strain NM8 and Bacillus subtilis strain NM28 through 16S rRNA sequencing. Results showed that B. cereus strain NM28 is more effective than B. cereus strain NM8 in promoting the growth of Cr-stressed Chili that might be suitable to develop biofertilizer for sustainable production of vegetables under metal stress.
Collapse
Affiliation(s)
- Natasha Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Maqshoof Ahmad
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Zaffar Malik
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Azhar Hussain
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ahmad Ali
- Department of Soil Science, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Khan MTA, Al-Battashi H, Al-Hinai M, Almdawi M, Pracejus B, Elshafey ESI, Abed RMM. Isolation of Aerobic Heterotrophic Bacteria from a Microbial Mat with the Ability to Grow on and Remove Hexavalent Chromium through Biosorption and Bioreduction. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05023-0. [PMID: 39102082 DOI: 10.1007/s12010-024-05023-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Water pollution with toxic hexavalent chromium, Cr(VI), is an environmental threat that has a direct impact on living organisms. The use of microorganisms from microbial mats to remove Cr(VI) has scarcely been investigated. Here, we isolated aerobic heterotrophic bacteria from a Cr-polluted microbial mat found in a mining site in Oman, and investigated their ability to remove Cr(VI), and the underlying mechanism(s) of removal. All isolates fell phylogenetically into the genera Enterobacter, Bacillus, and Cupriavidus, and could completely remove 1 mg L-1 Cr(VI) in 6 days. The strains could tolerate up to 2000 mg L-1 Cr(VI), and exhibited the highest Cr(VI) removal rate at 100 ± 9 mg L-1 d-1. Using scanning electron microscopy (SEM) coupled with elemental analysis, the strains were shown to adsorb Cr(VI) at their cell surfaces. The functional groups OH, NH2, Alkyl, Metal-O, and Cr(VI)-O were involved in the biosorption process. In addition, the strains were shown to reduce Cr(VI) to Cr(III) with the involvement of chromate reductase enzyme. We conclude that the aerobic heterotrophic bacteria isolated from Cr-polluted microbial mats use biosorption and bioreduction processes to remove Cr(VI) from wastewater.
Collapse
Affiliation(s)
- Mohammad Tariq Ali Khan
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Huda Al-Battashi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Malak Almdawi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Bernhard Pracejus
- Department of Earth Sciences, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - El-Said I Elshafey
- Chemistry Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman
| | - Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123, Al Khoud, Sultanate of Oman.
| |
Collapse
|
3
|
Shi XC, Wang K, Xue M, Mao W, Xu K, Tremblay PL, Zhang T. Ultrafast removal of toxic Cr(VI) by the marine bacterium Vibrio natriegens. CHEMOSPHERE 2024; 350:141177. [PMID: 38211787 DOI: 10.1016/j.chemosphere.2024.141177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/04/2023] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
The fastest-growing microbe Vibrio natriegens is an excellent platform for bioproduction processes. Until now, this marine bacterium has not been examined for bioremediation applications, where the production of substantial amounts of biomass would be beneficial. V. natriegens can perform extracellular electron transfer (EET) to Fe(III) via a single porin-cytochrome circuit conserved in Vibrionaceae. Electroactive microbes capable of EET to Fe(III) usually also reduce toxic metals such as carcinogenic Cr(VI), which is converted to Cr(III), thus decreasing its toxicity and mobility. Here, the performance of V. natriegens was explored for the bioremediation of Cr(VI). At a density of 100 mg/mL, V. natriegens removed 5-20 mg/L Cr(VI) within 30 s and 100 mg/L Cr(VI) within 10 min. In comparison, the model bacterium Escherichia coli grown to a comparable cell density removed Cr(VI) 36 times slower. To eliminate Cr(VI), V. natriegens had to be metabolically active, and functional outer-membrane c-type cytochromes were required. At the end of the Cr(VI) removal process, V. natriegens had reduced all of it into Cr(III) while adsorbing more than half of the metallic ions. These results demonstrate that V. natriegens, with its fast metabolism, is a viable option for the rapid treatment of aqueous pollution with Cr.
Collapse
Affiliation(s)
- Xiao-Chen Shi
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Advanced Engineering Technology Research Institute of Zhongshan City, Wuhan University of Technology, Zhongshan, 528437, PR China
| | - Kefan Wang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Miao Xue
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Weijia Mao
- Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Kai Xu
- Center for Material Research and Analysis, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Pier-Luc Tremblay
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| | - Tian Zhang
- School of Chemistry, Chemical Engineering, and Life Science, Wuhan University of Technology, Wuhan, 430070, PR China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, PR China; Institut WUT-AMU, Wuhan University of Technology, Wuhan, 430070, PR China; Shaoxing Institute for Advanced Research, Wuhan University of Technology, Shaoxing, 312300, PR China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya, 572024, PR China.
| |
Collapse
|
4
|
Tumolo M, De Paola D, Uricchio VF, Ancona V. Biostimulation effect of different amendments on Cr(VI) recovering microbial community. N Biotechnol 2023; 78:29-41. [PMID: 37793602 DOI: 10.1016/j.nbt.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023]
Abstract
The present study used Cr(VI)-polluted microcosms amended with lactate or yeast extract, and nonamended microcosms as control, to investigate how a native bacterial community varied in response to the treatment and during the pollutant removal. Results suggested that providing electron donors resulted in a proliferation of a few bacterial species, with the consequent decrease in observed species richness and evenness, and was a driving force for the bacterial compositional shift. Lactate promoted, in the first instance, the enrichment of fermentative bacteria belonging to Chromobacteriaceae, including Paludibacterium, and Micrococcaceae as observed after 4 days. When the rate of Cr(VI) removal was maximum in microcosms amended with lactate, the most represented taxa were Pseudarcicella and Azospirillum. Using yeast extract as a carbon source and electron donor led instead to the significant enrichment of Shewanella, followed by Vogesella and Acinetobacter on the 4th day, corresponding to 90% of Cr(VI) removed from the system. After the complete Cr(VI) removal, achieved in 7 days in the presence of yeast extract, α-diversity was notably increased. The amendment-specific turnover of the enriched bacterial taxa resulted in a different kinetic of pollutant removal. In particular, yeast extract promoted the quickest Cr(VI) reduction, while lactate supported a slower, but also considerable, pollutant removal from water. Since it is reasonable to assume that a macroscopic effect, such as the observed Cr(VI) removal, involved the overrepresented taxa, deepening the knowledge of the native bacterial community and its changes were used to hypothesize the possible microbial pathways involved.
Collapse
Affiliation(s)
- Marina Tumolo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; Department of Biology, University of Bari, 70126 Bari, BA, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, Italian National Research Council (IBBR-CNR), 70126 Bari, BA, Italy.
| | - Vito Felice Uricchio
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Valeria Ancona
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy.
| |
Collapse
|
5
|
Ji C, Huang J, Li J, Zhang X, Yang G, Ma Y, Hao Z, Zhang X, Chen B. Deciphering the impacts of chromium contamination on soil bacterial communities: A comparative analysis across various soil types. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119335. [PMID: 37857212 DOI: 10.1016/j.jenvman.2023.119335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/21/2023]
Abstract
Addressing the widespread concern of chromium (Cr) pollution, this study investigated its impacts on bacterial communities across eight soil types, alongside the potential Cr transformation-related genes. Utilizing real-time PCR, 16S rRNA gene sequencing and gene prediction, we revealed shifts in bacterial community structure and function at three Cr exposure levels. Our results showed that the bacterial abundance in all eight soil types was influenced by Cr to varying extents, with yellow‒brown soil being the most sensitive. The bacterial community composition of different soil types exhibited diverse responses to Cr, with only the relative abundance of Proteobacteria decreasing with increasing Cr concentration across all soil types. Beta diversity analysis revealed that while Cr concentration impacted the assembly process of bacterial communities to a certain extent, the influence on the compositional structure of bacterial communities was primarily driven by soil type rather than Cr concentration. The study also identified biomarkers for each soil type under three Cr levels, offering a basis for monitoring changes in Cr pollution. By predicting crucial functional genes related to Cr transformation, it was observed that the relative abundance of chrA (chromate transporter) in yellow‒brown soil significantly exceeded that in all other soil types, suggesting its potential for Cr adaptation. The study also revealed correlations among soil physicochemical properties, Cr concentration, and these functional genes, providing a foundation for future research aimed at more precise functional analysis and the development of effective soil remediation strategies.
Collapse
Affiliation(s)
- Chuning Ji
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou City, Jiangsu, 221116, China
| | - Jiu Huang
- School of Environment Science and Spatial Information, China University of Mining and Technology, Xuzhou City, Jiangsu, 221116, China
| | - Jinglong Li
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Xuemeng Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; RDFZ CHAOYANG School, Beijing, 100028, China
| | - Guang Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Youran Ma
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Zhang H, Xu Z, Zhou P, Zhang Y, Wang Y. Simultaneous nitrate and chromium removal mechanism in a pyrite-involved mixotrophic biofilter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123882-123892. [PMID: 37996574 DOI: 10.1007/s11356-023-31070-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/12/2023] [Indexed: 11/25/2023]
Abstract
Microbially mediated NO3--N and Cr(VI) reduction is being recognized as an eco-friendly and cost-effective remediation strategy. Iron sulfide mineral, as a natural inorganic electron donor, has a strong influence on NO3--N and Cr(VI) transformation, respectively. However, little is known about the simultaneous nitrate and chromium removal performance and underlying mechanism in an iron sulfide mineral-involved mixotrophic biofilter. This study demonstrated that the NO3--N and Cr(VI) removal efficiencies were stable at 62 ± 8% and 56 ± 10%, and most of them were eliminated in the 0-100-mm region of the biofilter. Cr(VI) was reduced to insoluble Cr(III) via microbial and chemical pathways, which was confirmed by the SEM-EDS morphology and the XPS spectra of biofilm and pyrite particles. SO42- was as a main byproduct of pyrite oxidation; however, the bacterial SO42- reduction synchronously occurred, evidenced by the variations of TOC and SO42- concentrations. These results suggested that there were complicated and intertwined biochemical relations between NO3--N/Cr(VI)/SO42-/DO (electron acceptors) and pyrite/organics (electron donors). Further investigation indicated that both the maximal biomass and greatest denitrifiers' relative abundances in microbial sample S1 well explained why the pollutants were removed in the 0-100-mm region. A variety of denitrifiers such as Pseudoxanthomona, Acidovorax, and Simplicispira were enriched, which probably were responsible for both NO3--N and Cr(VI) removal. Our findings advance the understanding of simultaneous nitrate and chromium removal in pyrite-involved mixotrophic systems and facilitate the new strategy development for nitrate and chromium remediation.
Collapse
Affiliation(s)
- Haigeng Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Zhongshuo Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China.
| | - Panpan Zhou
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China
| | - Yulei Zhang
- Fishery Machinery and Instrument Research Institute, Chinese Academy of Fisheries Sciences, Shanghai, 200092, China
| | - Yuhui Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201600, China
| |
Collapse
|
7
|
Kumari D, Dutta K. Study on the performance of vertical flow constructed wetland microcosm with Canna sps. for treatment of high chromium-containing wastewater. CHEMOSPHERE 2023; 341:139993. [PMID: 37657705 DOI: 10.1016/j.chemosphere.2023.139993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
Chromium (Cr (VI)) pollution has plagued the environment due to chromite mining and various industrial actions. Constructed wetlands (CW) have emerged as a potential wastewater management technique that utilizes physical, chemical, and biological processes. The present study investigates the use of vertical flow-constructed wetlands (CW) using manure-rich garden soil and sand as substrates in planted CW (CW-P) and unplanted CW (CW-UP) to remove Cr (VI) from simulated wastewater. The experiment was performed in two phases, i.e., Phase I and II, in the same system. In Phase I, initial Cr (VI) concentrations were varied between 5 and 200 mg/l at a fixed hydraulic retention time (HRT) of 48 h, while in Phase II, the effect of HRT (24 h, 48 h, and 96 h) was studied at a fixed Cr (VI) concentration of 200 mg/L in the influent. At 24 h, HRT removal efficiencies were 90.20% for CW-P and 86.41% for CW-UP. However, at 96 h of HRT, the system showed nearly the same removal efficiency. Scanning electron microscopy with energy dispersion X-Ray spectroscopy analysis suggested the conversion of Cr (VI) to Cr (III) in soil precipitate and the translocation of Cr (VI) in plant tissues (Canna sps.). Moreover, microbial diversity profiling indicated that microbial diversity involved in pollutant removal differed in both systems. The phytotoxicity test clearly showed the decrease in toxicity level in the treated effluent, concluding the reusability of treated water. This exploratory study suggested that the CW can potentially remove a higher concentration of hexavalent chromium at longer HRT.
Collapse
Affiliation(s)
- Divyani Kumari
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela Odisha, 769008, India
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela Odisha, 769008, India.
| |
Collapse
|
8
|
Xu X, Li H, Sun Y, Ma T, Shi L, Mu W, Wang H, Lu Y. Novel "on-off" fluorescence sensing for rapid and accurate determination of Cr 3+ based on g-CNQDs. RSC Adv 2023; 13:28550-28559. [PMID: 37780737 PMCID: PMC10534202 DOI: 10.1039/d3ra05091b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
Cr3+ is one of the most essential trace elements in living organisms and plays a vital role in human metabolism. However, both deficiency and excess intake of Cr3+ can be harmful to the human body. Therefore, the quantitative determination of Cr3+ is of great significance in the field of life science. Based on this, in this study, a g-CNQDs@p-acetaminophenol fluorescence sensing system was developed for the quantitative detection of Cr3+ in actual complex samples. G-CNQDs were synthesized with sodium citrate and urea as precursors. The fluorescence signal was enhanced by the synergistic effect between p-acetaminophenol (APAP) and g-CNQDs. The fluorescence quenching phenomenon can be produced when Cr3+ is introduced into the fluorescence-enhanced g-CNQDs@p-acetaminophenol system. An "on-off" fluorescence sensing system was constructed based on g-CNQDs@p-acetaminophenol for the quantitative detection of Cr3+. The experimental data showed a wide linear region in the concentration range of 0.64-63.0 μM, and the detection limit was as low as 0.23 μM. The construction of the sensor system broadens the research field for the practical application of Cr3+.
Collapse
Affiliation(s)
- Xiaohua Xu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Huye Li
- The Fourth People's Hospital of Qinghai Province Xining 810007 China
| | - Yapeng Sun
- No. 2 Middle School in Xining City Xining 810007 Qinghai Province China
| | - Tianfeng Ma
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Lin Shi
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Wencheng Mu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Huan Wang
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| | - Yongchang Lu
- Modern Tibetan Medicine Creation Engineering Technology Research Center of Qinghai Province, College of Pharmacy, Qinghai Nationalities University Xining 810007 China
| |
Collapse
|
9
|
Huang Y, Tang J, Zhang B, Long ZE, Ni H, Fu X, Zou L. Influencing factors and mechanism of Cr(VI) reduction by facultative anaerobic Exiguobacterium sp. PY14. Front Microbiol 2023; 14:1242410. [PMID: 37637125 PMCID: PMC10449125 DOI: 10.3389/fmicb.2023.1242410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Microbial reduction is an effective way to deal with hexavalent chromium [Cr(VI)] contamination in the environment, which can significantly mitigate the biotoxicity and migration of this pollutant. The present study investigated the influence of environmental factors on aqueous Cr(VI) removal by a newly isolated facultative anaerobic bacterium, Exiguobacterium sp. PY14, and revealed the reduction mechanism. This strain with a minimum inhibitory concentration of 400 mg/L showed the strongest Cr(VI) removal capacity at pH 8.0 because of its basophilic nature, which was obviously depressed by increasing the Cr(VI) initial concentration under both aerobic and anaerobic conditions. In contrast, the removal rate constant for 50 mg/L of Cr(VI) under anaerobic conditions (1.82 × 10-2 h-1) was 3.3 times that under aerobic conditions. The co-existence of Fe(III) and Cu(II) significantly promoted the removal of Cr(VI), while Ag(I), Pb(II), Zn(II), and Cd(II) inhibited it. Electron-shuttling organics such as riboflavin, humic acid, and anthraquinone-2,6-disulfonate promoted the Cr(VI) removal to varying degrees, and the enhancement was more significant under anaerobic conditions. The removal of aqueous Cr(VI) by strain PY14 was demonstrated to be due to cytoplasmic rather than extracellular reduction by analyzing the contributions of different cell components, and the end products existed in the aqueous solution in the form of organo-Cr(III) complexes. Several possible genes involved in Cr(VI) metabolism, including chrR and chrA that encode well-known Chr family proteins responsible for chromate reduction and transport, respectively, were identified in the genome of PY14, which further clarified the Cr(VI) reduction pathway of this strain. The research progress in the influence of crucial environmental factors and biological reduction mechanisms will help promote the potential application of Exiguobacterium sp. PY14 with high adaptability to environmental stress in Cr(VI) removal in the actual environment.
Collapse
Affiliation(s)
- Yunhong Huang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Jie Tang
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Bei Zhang
- College of Art and Design, Jiangxi Institute of Fashion Technology, Nanchang, China
| | - Zhong-Er Long
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Haiyan Ni
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Xueqin Fu
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Long Zou
- Nanchang Key Laboratory of Microbial Resources Exploitation and Utilization from Poyang Lake Wetland, College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
10
|
Lin WH, Chien CC, Ou JH, Yu YL, Chen SC, Kao CM. Cleanup of Cr(VI)-polluted groundwater using immobilized bacterial consortia via bioreduction mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117947. [PMID: 37075632 DOI: 10.1016/j.jenvman.2023.117947] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/02/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
Cr(VI) bioreduction has become a remedial alternative for Cr(VI)-polluted site cleanup. However, lack of appropriate Cr(VI)-bioreducing bacteria limit the field application of the in situ bioremediation process. In this study, two different immobilized Cr(VI)-bioreducing bacterial consortia using novel immobilization agents have been developed for Cr(VI)-polluted groundwater remediation: (1) granular activated carbon (GAC) + silica gel + Cr(VI)-bioreducing bacterial consortia (GSIB), and (2) GAC + sodium alginate (SA) + polyvinyl alcohol (PVA) + Cr(VI)-bioreducing bacterial consortia (GSPB). Moreover, two unique substrates [carbon-based agent (CBA) and emulsified polycolloid substrate (EPS)] were developed and used as the carbon sources for Cr(VI) bioreduction enhancement. The microbial diversity, dominant Cr-bioreducing bacteria, and changes of Cr(VI)-reducing genes (nsfA, yieF, and chrR) were analyzed to assess the effectiveness of Cr(VI) bioreduction. Approximately 99% of Cr(VI) could be bioreduced in microcosms with GSIB and CBA addition after 70 days of operation, which caused increased populations of total bacteria, nsfA, yieF, and chrR from 2.9 × 108 to 2.1 × 1012, 4.2 × 104 to 6.3 × 1011, 4.8 × 104 to 2 × 1011, and 6.9 × 104 to 3.7 × 107 gene copies/L. In microcosms with CBA and suspended bacteria addition (without bacterial immobilization), the Cr(VI) reduction efficiency dropped to 60.3%, indicating that immobilized Cr-bioreducing bacteria supplement could enhance Cr(VI) bioreduction. Supplement of GSPB led to a declined bacterial growth due to the cracking of the materials. The addition of GSIB and CBA could establish a reduced condition, which favored the growth of Cr(VI)-reducing bacteria. The Cr(VI) bioreduction efficiency could be significantly improved through adsorption and bioreduction mechanisms, and production of Cr(OH)3 precipitates confirmed the occurrence of Cr(VI) reduction. The main Cr-bioreducing bacteria included Trichococcus, Escherichia-Shigella, and Lactobacillus. Results suggest that the developed GSIB bioremedial system could be applied to cleanup Cr(VI)-polluted groundwater effectively.
Collapse
Affiliation(s)
- Wei-Han Lin
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chih-Ching Chien
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Chung-Li City, Taoyuan, Taiwan
| | - Jiun-Hau Ou
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ying-Liang Yu
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ssu-Ching Chen
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Nie M, Cai M, Wu C, Li S, Chen S, Shi G, Wang X, Hu C, Xie J, Tang Y, Zhang H, Zhao X. Selenium-mediated Cr(VI) reduction and SeNPs synthesis accelerated Bacillus cereus SES to remediate Cr contamination. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131713. [PMID: 37301074 DOI: 10.1016/j.jhazmat.2023.131713] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/03/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Microbial biotransformation of Cr(VI) is a sustainable approach to reduce Cr(VI) toxicity and remediate Cr(VI) contamination. In this study, Bacillus cereus SES with the capability of reducing both Cr(VI) and Se(IV) was isolated, and the effect of Se supplementation on Cr(VI) reduction by Bacillus cereus SES was investigated. Se(IV) addition enabled 2.6-fold faster Cr(VI) reduction, while B. cereus SES reduced 96.96% Se(IV) and produced more selenium nanoparticles (SeNPs) in the presence of Cr(VI). Co-reduction products of B. cereus SES on Cr(VI) and Se(IV) were SeNPs adsorbed with Cr(III). The relevant mechanisms were further revealed by proteomics. Se(IV) supplementation mediated the synthesis of Cr(VI) reductants and stress-resistant substances, thus enhancing Cr(VI) resistance and promoting Cr(VI) reduction. Meanwhile, high Se(IV) reduction rate was associated with Cr(VI)-induced electron transport processes, and Cr(VI) mediated the up-regulation of flagellar assembly, protein export and ABC transporters pathways to synthesis and export more SeNPs. Furthermore, Se combined with B. cereus SES had the potential to reduce the toxicity of Cr(VI) via reducing the bioavailability of Cr and improving the bioavailability of Se in soil. Results suggested that Se could be an efficient strategy to enhance the remediation of B. cereus SES on Cr contamination.
Collapse
Affiliation(s)
- Min Nie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Miaomiao Cai
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming 365004, China
| | - Shiqian Li
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, Nanchang 330063, China
| | - Guangyu Shi
- College of Environment Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chengxiao Hu
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanni Tang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohu Zhao
- State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Ramli NN, Othman AR, Kurniawan SB, Abdullah SRS, Hasan HA. Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiol Res 2023; 268:127288. [PMID: 36571921 DOI: 10.1016/j.micres.2022.127288] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/26/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Heavy metal wastes, particularly hexavalent chromium [Cr(VI)], are generated from anthropogenic activities, and their increasing abundance has been a research concern due to their toxicity, genotoxicity, carcinogenicity and mutagenicity. Exposure to these dangerous pollutants could lead to chronic infections and even mortality in humans and animals. Bioremediation using microorganisms, particularly bacteria, has gained considerable interest because it can remove contaminants naturally and is safe to the surrounding environment. Bacteria, such as Pseudomonas putida and Bacillus subtilis, can reduce the toxic Cr(VI) to the less toxic trivalent chromium Cr(III) through mechanisms including biotransformation, biosorption and bioaccumulation. These mechanisms are mostly linked to chromium reductase and nitroreductase enzymes, which are involved in the Cr(VI) reduction pathway. However, relevant data on the nitroreductase route remain insufficient. Thus, this work proposes an alternative metabolic pathway of nitroreductase, wherein nitrate activates the reaction and indirectly reduces toxic chromium. This nitroreductase pathway occurs concurrently with the chromium reduction pathway.
Collapse
Affiliation(s)
- Nur Nadhirah Ramli
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
13
|
Biosorption of Hexavalent Chromium by Bacillus megaterium and Rhodotorula sp. Inactivated Biomass. Processes (Basel) 2023. [DOI: 10.3390/pr11010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Due to the adverse effects of hexavalent chromium (Cr6+) on human health and the quality of the environment, the scientific community has invested a lot of effort to solve this pollution problem. Thus, implementing sustainable alternatives for Cr6+ elimination by exploiting the capacity of microbial biomass to retain heavy metals by biosorption is considered an economic and eco-friendly solution, compared to the conventional physico-chemical processes. However, the ability of microorganisms to remove Cr6+ from liquid effluents can strongly be affected by biotic and abiotic factors. With these issues in mind, the main purpose of this paper was to investigate Cr6+ biosorption on Bacillus megaterium and Rhodotorula sp. biomass inactivated by thermal treatments, exploring the effects of some factors such as: pH, biosorbent dose, initial concentration of the metal in solution, temperature and contact time between the biosorbent and the metal ions on process effectiveness. The results showed that Cr6+ removal by biosorption on the selected microorganisms was strongly influenced by the pH of the solution which contains chromium, the reduction being the principal mechanism involved in hexavalent chromium biosorption. Equilibrium and kinetic studies were also performed, together with SEM-EDX and FTIR spectra, to explain the mechanisms of the biosorption process on the selected biomasses. Maximum uptake capacities of 34.80 mg/g biosorbent and 47.70 mg/g biosorbent were achieved by Bacillus megaterium and Rhodotorula sp., respectively, at pH 1, biosorbent dosage of 8 g/L, 25 °C, after a contact time of 48 h and an initial Cr6+ concentration in solution of 402.52 mg/L. The experimental results showed that Cr6+ biosorption by selected microorganisms followed the Elovich model, the values of the correlation coefficients being 0.9868 and 0.9887, respectively. The Freundlich isotherm model best describes the Cr6+ biosorption by Bacillus megaterium and Rhodotorula sp., indicating that a multilayer biosorption mainly controls the process and is conducted on heterogeneous surfaces with uniformly distributed energy.
Collapse
|
14
|
Long B, Liao L, Jia F, Luo Y, He J, Zhang W, Shi J. Oxalic acid enhances bioremediation of Cr(VI) contaminated soil using Penicillium oxalicum SL2. CHEMOSPHERE 2023; 311:136973. [PMID: 36283433 DOI: 10.1016/j.chemosphere.2022.136973] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Oxalic acid is the most abundant low molecular weight organic acid (LMWOA) in many environments and offers enormous prospects for treating Cr(VI) contamination. In this study, laboratory batch experiments were conducted to estimate the roles of oxalic acid in Cr(VI) removal by Penicillium oxalicum SL2. Oxalic acid changed the initial pH and provided a suitable condition for the growth of strain SL2 when the penicillium was applied to bioremediation of Cr(VI) contamination in alkaline soil. Gompertz model analysis indicated that initial pH affected the lag time of the growth curve of strain SL2. Scanning electron microscopy and scanning transmission X-ray microscopy analysis showed strain SL2 sufficiently contacted with contaminated soil and reduced Cr(VI) to Cr(III) in the hyphae. The results suggested that oxalic acid could enhance the bioremediation efficiency of strain SL2 though improving chromium bioleaching from the contaminated soil and strengthening Cr(VI) removal in the leaching solution. This study provided oxalic acid as a green reagent for stimulating Cr(VI) removal by strain SL2 and would expand knowledge on the roles of LMWOA in Cr(VI) bioremediation.
Collapse
Affiliation(s)
- Bibo Long
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China; Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Lingling Liao
- CVC Certification and Testing Company Limited, Guangzhou, Guangdong, 510799, China
| | - Fei Jia
- Zhejiang Jiuhe Geological and Ecological Environment Planning and Design Company, Huzhou, Zhejiang, 313002, China
| | - Yating Luo
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Junyu He
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Wenhua Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong, 510316, China
| | - Jiyan Shi
- Department of Environmental Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
15
|
Hlihor RM, Roşca M, Drăgoi EN, Simion IM, Favier L, Gavrilescu M. New insights into the application of fungal biomass for Chromium(VI) bioremoval from aqueous solutions using Design of Experiments and Differential Evolution based Neural Network approaches. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
16
|
Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. WATER 2022. [DOI: 10.3390/w14142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased groundwater and soil contamination by hexavalent chromium have led to the employment of a variety of detoxification methods. Biological remediation of Cr(VI) polluted aquifers is an eco-friendly method that can be performed in situ by stimulating the indigenous microbial population with organic and inorganic electron donors. In order to study the effect of different redox conditions on microbial remediated Cr(VI) reduction to Cr(III), microcosm experiments were conducted under anaerobic, anoxic, and sulfate-reducing conditions and at hexavalent chromium groundwater concentrations in the 0–3000 μg/L range, with groundwater and soil collected from an industrial area (Inofyta region). As electron donors, molasses, emulsified vegetable oil (EVO), and FeSO4 were employed. To quantitatively describe the degradation kinetics of Cr(VI), pseudo-first-order kinetics were adopted. The results indicate that an anaerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III), while the addition of Fe2+ can further increase Cr(VI) removal rate significantly. Furthermore, Cr(VI) microbial reduction is possible in the presence of NO3− at rates comparable to anaerobic Cr(VI) microbial reduction, while high sulfate concentrations have a negative effect on Cr(VI) bioreduction rates in comparison to lower sulfate concentrations.
Collapse
|
17
|
Plaza-Cazón J, Landea MPS, Donati ER. Bioreduction and biosorption of chromium by Undaria pinntifida. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
18
|
Kapoor RT, Bani Mfarrej MF, Alam P, Rinklebe J, Ahmad P. Accumulation of chromium in plants and its repercussion in animals and humans. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119044. [PMID: 35217142 DOI: 10.1016/j.envpol.2022.119044] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/19/2022] [Indexed: 05/26/2023]
Abstract
The untreated effluents released from industrial operations have adverse impacts on human health, environment and socio-economic aspects. Environmental pollution due to chromium is adversely affecting our natural resources and ecosystem. Chromium is hazardous carcinogenic element released from spontaneous activities and industrial procedures. Chromium toxicity, mobility and bioavailability depend mainly on its speciation. Chromium mainly exists in two forms, first as an immobile, less soluble trivalent chromium [Cr(III)] species under reducing conditions whereas hexavalent chromium [Cr(VI)] as a mobile, toxic and bioavailable species under oxidizing conditions. Hexavalent chromium is more pernicious in comparison to trivalent form. Chromium negatively affects crop growth, total yield and grain quality. Exposure of chromium even at low concentration enhances its accretion in cells of human-beings and animals which may show detrimental health effects. Many techniques have been utilized for the elimination of chromium. The selection of the green and cost-efficient technology for treatment of industrial effluent is an arduous task. The present review highlights the problems associated with chromium pollution and need of its immediate elimination by suitable remediation strategies. Further, investigations are required to fill the gaps to overcome the problem of chromium contamination and implementation of sustainable remediation strategies with their real-time applicability on the contaminated sites.
Collapse
Affiliation(s)
- Riti Thapar Kapoor
- Plant Physiology Laboratory, Amity Institute of Biotechnology, Amity University, Noida, 201 313, Uttar Pradesh, India
| | - Manar Fawzi Bani Mfarrej
- Department of Life and Environmental Sciences, College of Natural and Health Sciences, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste Management, Laboratory of Soil and Groundwater Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saudi University, P. O. Box. 2460, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
19
|
Liang CF, Wu SH, Wang YL, Xu Z, Liu Y, Ren HT, Jia SY, Han X. The fast redox cycle of Cu(II)-Cu(I)-Cu(II) in the reduction of Cr(VI) by the Cu(II)-thiosulfate system. CHEMOSPHERE 2022; 293:133584. [PMID: 35032515 DOI: 10.1016/j.chemosphere.2022.133584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Thiosulfate (S2O32-) is an important ligand to complex metal cations, however, the reactivity of metal-thiosulfate complexes has barely been mentioned. In this study, the reactivity of the Cu(II)-S2O32- system in the reduction of Cr(VI) was investigated. Kinetic results show that the reduction rates of Cr(VI) decrease with increasing pH values from 3.0 to 5.0, and 94.3% and 97.5% of 10 mg L-1 Cr(VI) was rapidly reduced within 1 min at pH 3.0 and within 30 min at pH 5.0, respectively at the molar ratio of Cu(II):S2O32- of 0.05. We rule out the contributions of S species of tetrathionate (S4O62-) and sulfite (SO32-) to Cr(VI) reduction and point out that the produced Cu(I) in the Cu(II)-S2O32- system is the key reductant that mediates the reduction of Cr(VI). We suggest that complexation between Cu(II) and S2O32- with the formation of CuII(S2O3)22- is the pre-requisite for the formation of CuI(S2O3)n1-2n, which plays an important role in Cr(VI) reduction, accompanied by the re-oxidation of Cu(I) to Cu(II) by Cr(VI), achieving the rapid redox cycling of Cu(II)-Cu(I)-Cu(II). Such a redox cycle also mediates the denitrification process of NO2- to NH3/NH4+ under weakly acidic conditions. This study enriches our understanding on the reducing reactivity of the Cu(II)-S2O32- system and the importance of the Cu(II)-Cu(I)-Cu(II) redox cycle towards environmental oxidizing contaminants.
Collapse
Affiliation(s)
- Cheng-Feng Liang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Song-Hai Wu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China; College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, 830054, Xinjiang, PR China.
| | - Yu-Le Wang
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Zhi Xu
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Hai-Tao Ren
- School of Textiles, Tiangong University, Tianjin, 300387, PR China
| | - Shao-Yi Jia
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China
| | - Xu Han
- Tianjin Key Laboratory of Chemical Process Safety and Equipment Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
20
|
Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022; 13:4923-4938. [PMID: 35164635 PMCID: PMC8973695 DOI: 10.1080/21655979.2022.2037273] [Citation(s) in RCA: 94] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Industrial effluents/wastewater are the main sources of hexavalent chromium (Cr (VI)) pollutants in the environment. Cr (VI) pollution has become one of the world’s most serious environmental concerns due to its long persistence in the environment and highly deadly nature in living organisms. To its widespread use in industries Cr (VI) is highly toxic and one of the most common environmental contaminants. Cr (VI) is frequently non-biodegradable in nature, which means it stays in the environment for a long time, pollutes the soil and water, and poses substantial health risks to humans and wildlife. In living things, the hexavalent form of Cr is carcinogenic, genotoxic, and mutagenic. Physico-chemical techniques currently used for Cr (VI) removal are not environmentally friendly and use a large number of chemicals. Microbes have many natural or acquired mechanisms to combat chromium toxicity, such as biosorption, reduction, subsequent efflux, or bioaccumulation. This review focuses on microbial responses to chromium toxicity and the potential for their use in environmental remediation. Moreover, the research problem and prospects for the future are discussed in order to fill these gaps and overcome the problem associated with bacterial bioremediation’s real-time applicability.
Collapse
Affiliation(s)
- Pooja Sharma
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Surendra Pratap Singh
- Plant Molecular Biology Laboratory, Department of Botany, Dayanand Anglo-Vedic (PG) College, Chhatrapati Shahu Ji Maharaj University, Kanpur India
| | - Sheetal Kishor Parakh
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore
| | - Yen Wah Tong
- Environmental Research Institute, National University of Singapore, Singapore.,Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (Create), Singapore.,Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| |
Collapse
|
21
|
Matturro B, Zeppilli M, Lai A, Majone M, Rossetti S. Metagenomic Analysis Reveals Microbial Interactions at the Biocathode of a Bioelectrochemical System Capable of Simultaneous Trichloroethylene and Cr(VI) Reduction. Front Microbiol 2021; 12:747670. [PMID: 34659183 PMCID: PMC8516407 DOI: 10.3389/fmicb.2021.747670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 01/04/2023] Open
Abstract
Bioelectrochemical systems (BES) are attractive and versatile options for the bioremediation of organic or inorganic pollutants, including trichloroethylene (TCE) and Cr(VI), often found as co-contaminants in the environment. The elucidation of the microbial players' role in the bioelectroremediation processes for treating multicontaminated groundwater is still a research need that attracts scientific interest. In this study, 16S rRNA gene amplicon sequencing and whole shotgun metagenomics revealed the leading microbial players and the primary metabolic interactions occurring in the biofilm growing at the biocathode where TCE reductive dechlorination (RD), hydrogenotrophic methanogenesis, and Cr(VI) reduction occurred. The presence of Cr(VI) did not negatively affect the TCE degradation, as evidenced by the RD rates estimated during the reactor operation with TCE (111±2 μeq/Ld) and TCE/Cr(VI) (146±2 μeq/Ld). Accordingly, Dehalococcoides mccartyi, the primary biomarker of the RD process, was found on the biocathode treating both TCE (7.82E+04±2.9E+04 16S rRNA gene copies g-1 graphite) and TCE/Cr(VI) (3.2E+07±2.37E+0716S rRNA gene copies g-1 graphite) contamination. The metagenomic analysis revealed a selected microbial consortium on the TCE/Cr(VI) biocathode. D. mccartyi was the sole dechlorinating microbe with H2 uptake as the only electron supply mechanism, suggesting that electroactivity is not a property of this microorganism. Methanobrevibacter arboriphilus and Methanobacterium formicicum also colonized the biocathode as H2 consumers for the CH4 production and cofactor suppliers for D. mccartyi cobalamin biosynthesis. Interestingly, M. formicicum also harbors gene complexes involved in the Cr(VI) reduction through extracellular and intracellular mechanisms.
Collapse
Affiliation(s)
| | - Marco Zeppilli
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Agnese Lai
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Mauro Majone
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | | |
Collapse
|
22
|
Danouche M, El Ghachtouli N, El Arroussi H. Phycoremediation mechanisms of heavy metals using living green microalgae: physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021; 7:e07609. [PMID: 34355100 PMCID: PMC8322293 DOI: 10.1016/j.heliyon.2021.e07609] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Heavy metal (HM) contamination of water bodies is a serious global environmental problem. Because they are not biodegradable, they can accumulate in food chains, causing various signs of toxicity to exposed organisms, including humans. Due to its effectiveness, low cost, and ecological aspect, phycoremediation, or the use of microalgae's ecological functions in the treatment of HMs contaminated wastewater, is one of the most recommended processes. This study aims to examine in depth the mechanisms involved in the phycoremediation of HMs by microalgae, it also provides an overview of the prospects for improving the productivity, selectivity, and cost-effectiveness of this bioprocess through physicochemical and genetic engineering applications. Firstly, this review proposes a detailed examination of the biosorption interactions between cell wall functional groups and HMs, and their complexation with extracellular polymeric substances released by microalgae in the extracellular environment under stress conditions. Subsequently, the metal transporters involved in the intracellular bioaccumulation of HMs as well as the main intracellular mechanisms including compartmentalization in cell organelles, enzymatic biotransformation, or photoreduction of HMs were also extensively reviewed. In the last section, future perspectives of physicochemical and genetic approaches that could be used to improve the phytoremediation process in terms of removal efficiency, selectivity for a targeted metal, or reduction of treatment time and cost are discussed, which paves the way for large-scale application of phytoremediation processes.
Collapse
Affiliation(s)
- Mohammed Danouche
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Naïma El Ghachtouli
- Microbial Biotechnology and Bioactive Molecules Laboratory, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Rabat, Morocco
- AgroBioScience (AgBS), Mohammed VI Polytechnic University (UM6P), Benguerir, Morocco
| |
Collapse
|