1
|
Edison LK, Kudva IT, Kariyawasam S. Comparative Transcriptome Analysis of Shiga Toxin-Producing Escherichia coli O157:H7 on Bovine Rectoanal Junction Cells and Human Colonic Epithelial Cells during Initial Adherence. Microorganisms 2023; 11:2562. [PMID: 37894220 PMCID: PMC10609592 DOI: 10.3390/microorganisms11102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are notorious foodborne pathogens, capable of causing severe diarrhea and life-threatening complications in humans. Cattle, acting as both primary reservoirs and asymptomatic carriers of STEC, predominantly harbor the pathogen in their rectoanal junction (RAJ), facilitating its transmission to humans through contaminated food sources. Despite the central role of cattle in STEC transmission, the molecular mechanisms governing STEC's adaptation in the RAJ of the asymptomatic reservoir host and its subsequent infection of human colonic epithelial cells, resulting in diarrhea, remain largely unexplored. This study aims to uncover these complicated dynamics by focusing on the STEC O157:H7 serotype within two distinct host environments, bovine RAJ cells and human colonic epithelial cells, during initial colonization. We employed comparative transcriptomics analysis to investigate differential gene expression profiles of STEC O157:H7 during interactions with these cell types. STEC O157:H7 was cultured either with bovine RAJ cells or the human colonic epithelial cell line CCD CoN 841 to simulate STEC-epithelial cell interactions within these two host species. High-throughput RNA sequencing revealed 829 and 1939 bacterial genes expressed in RAJ and CCD CoN 841, respectively. After gene filtering, 221 E. coli O157:H7 genes were upregulated during initial adherence to CCD CoN cells and 436 with RAJ cells. Furthermore, 22 genes were uniquely expressed with human cells and 155 genes with bovine cells. Our findings revealed distinct expression patterns of STEC O157:H7 genes involved in virulence, including adherence, metal iron homeostasis, and stress response during its initial adherence (i.e., six hours post-infection) to bovine RAJ cells, as opposed to human colonic epithelial cells. Additionally, the comparative analysis highlighted the potential role of some genes in host adaptation and tissue-specific pathogenicity. These findings shed new light on the potential mechanisms of STEC O157:H7 contributing to colonize the intestinal epithelium during the first six hours of infection, leading to survival and persistence in the bovine reservoir and causing disease in humans.
Collapse
Affiliation(s)
- Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, IA 50010, USA;
| | - Subhashinie Kariyawasam
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Zhang W, Zhao XY, Wu J, Jin L, Lv J, Gao B, Liu P. Screening and Verification of Molecular Markers and Genes Related to Salt-Alkali Tolerance in Portunus trituberculatus. Front Genet 2022; 13:755004. [PMID: 35211153 PMCID: PMC8861530 DOI: 10.3389/fgene.2022.755004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Salt-alkali tolerance is one of the important breeding traits of Portunus trituberculatus. Identification of molecular markers linked to salt-alkali tolerance is prerequisite to develop such molecular marker-assisted breeding. In this study, Bulked Segregant Analysis (BSA) was used to screen molecular markers associated with salt-alkali tolerance trait in P. trituberculatus. Two DNA mixing pools with significant difference in salt-alkali tolerance were prepared and 94.83G of high-quality sequencing data was obtained. 855 SNPs and 1051 Indels were firstly selected as candidate markers by BSA analysis, out of which, 20 markers were further selected via △index value (close to 0 or 1) and eight of those were successfully verified. In addition, based on the located information of the markers in genome, eight candidate genes related to salt-alkali tolerance were anchored including ubiquitin-conjugating enzyme, aspartate-tRNA ligase, vesicle-trafficking protein, and so on. qPCR results showed that the expression patterns of all these genes changed significantly after salt-alkali stress, suggesting that they play certain roles in salt-alkali adaptation. Our results will provide applicable markers for molecular marker-assisted breeding and help to clarify the mechanisms of salt-alkali adaptation of P. trituberculatus.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,College of marine technology and environment, Dalian Ocean University, Dalian, China
| | - Xiao Yan Zhao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jie Wu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ling Jin
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Baoquan Gao
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Ping Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, P.R.China, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.,Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Sun Q, Liu J, Zhang K, Huang C, Li L, Dong J, Luo Y, Ma Z. De novo transcriptome assembly, polymorphic SSR markers development and population genetics analyses for southern corn rust (Puccinia polysora). Sci Rep 2021; 11:18029. [PMID: 34504267 PMCID: PMC8429556 DOI: 10.1038/s41598-021-97556-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Southern corn rust is a destructive maize disease caused by Puccinia polysora Underw that can lead to severe yield losses. However, genomic information and microsatellite markers are currently unavailable for this disease. In this study, we generated a total of 27,295,216 high-quality cDNA sequence reads using Illumina sequencing technology. These reads were assembled into 17,496 unigenes with an average length of 1015 bp. The functional annotation indicated that 8113 (46.37%), 1933 (11.04%) and 5516 (31.52%) unigenes showed significant similarity to known proteins in the NCBI Nr, Nt and Swiss-Prot databases, respectively. In addition, 2921 (16.70%) unigenes were assigned to KEGG database categories; 4218 (24.11%), to KOG database categories; and 6,603 (37.74%), to GO database categories. Furthermore, we identified 8,798 potential SSRs among 6653 unigenes. A total of 9 polymorphic SSR markers were developed to evaluate the genetic diversity and population structure of 96 isolates collected from Guangdong Province in China. Clonal reproduction of P. polysora in Guangdong was dominant. The YJ (Yangjiang) population had the highest genotypic diversity and the greatest number of the multilocus genotypes, followed by the HY (Heyuan), HZ (Huizhou) and XY (Xinyi) populations. These results provide valuable information for the molecular genetic analysis of P. polysora and related species.
Collapse
Affiliation(s)
- Qiuyu Sun
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jie Liu
- National Agro-Tech Extension and Service Center, Beijing, 100125 People’s Republic of China
| | - Keyu Zhang
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Chong Huang
- National Agro-Tech Extension and Service Center, Beijing, 100125 People’s Republic of China
| | - Leifu Li
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Jiayu Dong
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Yong Luo
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| | - Zhanhong Ma
- grid.22935.3f0000 0004 0530 8290College of Plant Protection, China Agricultural University, Beijing, 100193 People’s Republic of China
| |
Collapse
|
4
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction. BIOLOGY 2021; 10:biology10090840. [PMID: 34571717 PMCID: PMC8471823 DOI: 10.3390/biology10090840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Infections of potato tubers and roots by Spongospora subterranea result in powdery scab and root diseases. Losses due to infections with S. subterranea are substantial in most potato-growing regions of the world with no fully effective treatments available. Understanding the gene regulation of pathogens in their host is dependent on multidimensional datasets. In this study, we profiled the transcriptome and proteome of S. subterranea within the susceptible and resistant host. Enzyme activity and nucleic acid metabolism appear to be important to the virulence of S. subterranea. Our results provide a good resource for future functional studies of powdery scab and might be useful in S. subterranea inoculum management. Abstract Spongospora subterranea is an obligate biotrophic pathogen, causing substantial economic loss to potato industries globally. Currently, there are no fully effective management strategies for the control of potato diseases caused by S. subterranea. To further our understanding of S. subterranea biology during infection, we characterized the transcriptome and proteome of the pathogen during the invasion of roots of a susceptible and a resistant potato cultivar. A total of 7650 transcripts from S. subterranea were identified in the transcriptome analysis in which 1377 transcripts were differentially expressed between two cultivars. In proteome analysis, we identified 117 proteins with 42 proteins significantly changed in comparisons between resistant and susceptible cultivars. The functional annotation of transcriptome data indicated that the gene ontology terms related to the transportation and actin processes were induced in the resistant cultivar. The downregulation of enzyme activity and nucleic acid metabolism in the resistant cultivar suggests a probable influence of these processes in the virulence of S. subterranea. The protein analysis results indicated that the majority of differentially expressed proteins were related to the metabolic processes and transporter activity. The present study provides a comprehensive molecular insight into the multiple layers of gene regulation that contribute to S. subterranea infection and development in planta and illuminates the role of host immunity in affecting pathogen responses.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Robert S. Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Calum R. Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
- Correspondence:
| |
Collapse
|