1
|
Hamed MB, Busche T, Simoens K, Carpentier S, Kormanec J, Van Mellaert L, Anné J, Kalinowski J, Bernaerts K, Karamanou S, Economou A. Enhanced protein secretion in reduced genome strains of Streptomyces lividans. Microb Cell Fact 2024; 23:13. [PMID: 38183102 PMCID: PMC10768272 DOI: 10.1186/s12934-023-02269-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/10/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND S. lividans TK24 is a popular host for the production of small molecules and the secretion of heterologous protein. Within its large genome, twenty-nine non-essential clusters direct the biosynthesis of secondary metabolites. We had previously constructed ten chassis strains, carrying deletions in various combinations of specialized metabolites biosynthetic clusters, such as those of the blue actinorhodin (act), the calcium-dependent antibiotic (cda), the undecylprodigiosin (red), the coelimycin A (cpk) and the melanin (mel) clusters, as well as the genes hrdD, encoding a non-essential sigma factor, and matAB, a locus affecting mycelial aggregation. Genome reduction was aimed at reducing carbon flow toward specialized metabolite biosynthesis to optimize the production of secreted heterologous protein. RESULTS Two of these S. lividans TK24 derived chassis strains showed ~ 15% reduction in biomass yield, 2-fold increase of their total native secretome mass yield and enhanced abundance of several secreted proteins compared to the parental strain. RNAseq and proteomic analysis of the secretome suggested that genome reduction led to cell wall and oxidative stresses and was accompanied by the up-regulation of secretory chaperones and of secDF, a Sec-pathway component. Interestingly, the amount of the secreted heterologous proteins mRFP and mTNFα, by one of these strains, was 12 and 70% higher, respectively, than that secreted by the parental strain. CONCLUSION The current study described a strategy to construct chassis strains with enhanced secretory abilities and proposed a model linking the deletion of specialized metabolite biosynthetic clusters to improved production of secreted heterologous proteins.
Collapse
Affiliation(s)
- Mohamed Belal Hamed
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
- Molecular Biology Depart, National Research Centre, Dokii, Cairo, Egypt
- Department of Neurosciences, Leuven Research Institute for Neuroscience and Disease (LIND), KU Leuven, VIB-KU Leuven Center for Brain & Disease Research, Leuven, Belgium
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kenneth Simoens
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Sebastien Carpentier
- SYBIOMA, KU Leuven facility for Systems Biology Based Mass Spectrometry, Leuven, B-3000, Belgium
| | - Jan Kormanec
- Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Lieve Van Mellaert
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Jozef Anné
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| | - Joern Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Kristel Bernaerts
- Department of Chemical Engineering, Chemical and Biochemical Reactor Engineering and Safety (CREaS), KU Leuven, Leuven, B-3001, Belgium
| | - Spyridoula Karamanou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium.
| | - Anastassios Economou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Laboratory of Molecular Bacteriology, KU Leuven, Herestraat 49, Leuven, B-3000, Belgium
| |
Collapse
|
2
|
Guo W, Xiao Z, Huang T, Zhang K, Pan HX, Tang GL, Deng Z, Liang R, Lin S. Identification and characterization of a strong constitutive promoter stnYp for activating biosynthetic genes and producing natural products in streptomyces. Microb Cell Fact 2023; 22:127. [PMID: 37443029 DOI: 10.1186/s12934-023-02136-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Streptomyces are well known for their potential to produce various pharmaceutically active compounds, the commercial development of which is often limited by the low productivity and purity of the desired compounds expressed by natural producers. Well-characterized promoters are crucial for driving the expression of target genes and improving the production of metabolites of interest. RESULTS A strong constitutive promoter, stnYp, was identified in Streptomyces flocculus CGMCC4.1223 and was characterized by its effective activation of silent biosynthetic genes and high efficiency of heterologous gene expression. The promoter stnYp showed the highest activity in model strains of four Streptomyces species compared with the three frequently used constitutive promoters ermEp*, kasOp*, and SP44. The promoter stnYp could efficiently activate the indigoidine biosynthetic gene cluster in S. albus J1074, which is thought to be silent under routine laboratory conditions. Moreover, stnYp was found suitable for heterologous gene expression in different Streptomyces hosts. Compared with the promoters ermEp*, kasOp*, and SP44, stnYp conferred the highest production level of diverse metabolites in various heterologous hosts, including the agricultural-bactericide aureonuclemycin and the antitumor compound YM-216391, with an approximately 1.4 - 11.6-fold enhancement of the yields. Furthermore, the purity of tylosin A was greatly improved by overexpressing rate-limiting genes through stnYp in the industrial strain. Further, the yield of tylosin A was significantly elevated to 10.30 ± 0.12 g/L, approximately 1.7-fold higher than that of the original strain. CONCLUSIONS The promoter stnYp is a reliable, well-defined promoter with strong activity and broad suitability. The findings of this study can expand promoter diversity, facilitate genetic manipulation, and promote metabolic engineering in multiple Streptomyces species.
Collapse
Affiliation(s)
- Wenli Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhihong Xiao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Tingting Huang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Kai Zhang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
3
|
Sekurova ON, Sun YQ, Zehl M, Rückert C, Stich A, Busche T, Kalinowski J, Zotchev S. Coupling of the engineered DNA "mutator" to a biosensor as a new paradigm for activation of silent biosynthetic gene clusters in Streptomyces. Nucleic Acids Res 2021; 49:8396-8405. [PMID: 34197612 PMCID: PMC8373060 DOI: 10.1093/nar/gkab583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/31/2021] [Accepted: 06/23/2021] [Indexed: 11/14/2022] Open
Abstract
DNA replication fidelity in Streptomyces bacteria, prolific producers of many medically important secondary metabolites, is understudied, while in Escherichia coli it is controlled by DnaQ, the ϵ subunit of DNA polymerase III (DNA PolIII). Manipulation of dnaQ paralogues in Streptomyces lividans TK24, did not lead to increased spontaneous mutagenesis in this bacterium suggesting that S. lividans DNA PolIII uses an alternative exonuclease activity for proofreading. In Mycobacterium tuberculosis, such activity is attributed to the DnaE protein representing α subunit of DNA PolIII. Eight DnaE mutants designed based on the literature data were overexpressed in S. lividans, and recombinant strains overexpressing two of these mutants displayed markedly increased frequency of spontaneous mutagenesis (up to 1000-fold higher compared to the control). One of these 'mutators' was combined in S. lividans with a biosensor specific for antibiotic coelimycin, which biosynthetic gene cluster is present but not expressed in this strain. Colonies giving a positive biosensor signal appeared at a frequency of ca 10-5, and all of them were found to produce coelimycin congeners. This result confirmed that our approach can be applied for chemical- and radiation-free mutagenesis in Streptomyces leading to activation of orphan biosynthetic gene clusters and discovery of novel bioactive secondary metabolites.
Collapse
Affiliation(s)
- Olga N Sekurova
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Yi-Qian Sun
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Austria
| | - Christian Rückert
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Anna Stich
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Universität Bielefeld, Bielefeld, Germany
| | - Sergey B Zotchev
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Kuhl M, Rückert C, Gläser L, Beganovic S, Luzhetskyy A, Kalinowski J, Wittmann C. Microparticles enhance the formation of seven major classes of natural products in native and metabolically engineered actinobacteria through accelerated morphological development. Biotechnol Bioeng 2021; 118:3076-3093. [PMID: 33974270 DOI: 10.1002/bit.27818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022]
Abstract
Actinobacteria provide a rich spectrum of bioactive natural products and therefore display an invaluable source towards commercially valuable pharmaceuticals and agrochemicals. Here, we studied the use of inorganic talc microparticles (hydrous magnesium silicate, 3MgO·4SiO2 ·H2 O, 10 µm) as a general supplement to enhance natural product formation in this important class of bacteria. Added to cultures of recombinant Streptomyces lividans, talc enhanced production of the macrocyclic peptide antibiotic bottromycin A2 and its methylated derivative Met-bottromycin A2 up to 109 mg L-1 , the highest titer reported so far. Hereby, the microparticles fundamentally affected metabolism. With 10 g L-1 talc, S. lividans grew to 40% smaller pellets and, using RNA sequencing, revealed accelerated morphogenesis and aging, indicated by early upregulation of developmental regulator genes such as ssgA, ssgB, wblA, sigN, and bldN. Furthermore, the microparticles re-balanced the expression of individual bottromycin cluster genes, resulting in a higher macrocyclization efficiency at the level of BotAH and correspondingly lower levels of non-cyclized shunt by-products, driving the production of mature bottromycin. Testing a variety of Streptomyces species, talc addition resulted in up to 13-fold higher titers for the RiPPs bottromycin and cinnamycin, the alkaloid undecylprodigiosin, the polyketide pamamycin, the tetracycline-type oxytetracycline, and the anthramycin-analogs usabamycins. Moreover, talc addition boosted production in other actinobacteria, outside of the genus of Streptomyces: vancomycin (Amycolatopsis japonicum DSM 44213), teicoplanin (Actinoplanes teichomyceticus ATCC 31121), and the angucyclinone-type antibiotic simocyclinone (Kitasatospora sp.). For teicoplanin, the microparticles were even crucial to activate production. Taken together, the use of talc was beneficial in 75% of all tested cases and optimized natural and heterologous hosts forming the substance of interest with clusters under native and synthetic control. Given its simplicity and broad benefits, microparticle-supplementation appears as an enabling technology in natural product research of these most important microbes.
Collapse
Affiliation(s)
- Martin Kuhl
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | | | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Selma Beganovic
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Andriy Luzhetskyy
- Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| |
Collapse
|