1
|
Vievermanns K, Dierikx TH, Oldenburger NJ, Jamaludin FS, Niemarkt HJ, de Meij TGJ. Effect of probiotic supplementation on the gut microbiota in very preterm infants: a systematic review. Arch Dis Child Fetal Neonatal Ed 2024; 110:57-67. [PMID: 38925919 DOI: 10.1136/archdischild-2023-326691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE There is increasing evidence that probiotic supplementation in very preterm infants decreases the risk of necrotising enterocolitis (NEC), sepsis and mortality. The underlying mechanisms, including effects on the gut microbiota, are largely unknown. We aimed to systematically review the available literature on the effects of probiotic supplementation in very preterm infants on gut microbiota development. DESIGN A systematic review in Medline, Embase, Cochrane Library, CINAHL and Web of Science. SETTING Neonatal intensive care unit. PATIENTS Premature infants. INTERVENTION Probiotic supplementation. MAIN OUTCOME MEASURES Gut microbiota. RESULTS A total of 1046 articles were screened, of which 29 were included. There was a large heterogeneity in study design, dose and type of probiotic strains, timepoints of sample collection and analysing techniques. Bifidobacteria and lactobacilli were the most used probiotic strains. The effects of probiotics on alpha diversity were conflicting; however, beta diversity was significantly different between probiotic-supplemented infants and controls in the vast majority of studies. In most studies, probiotic supplementation led to increased relative abundance of the supplemented strains and decreased abundance of genera such as Clostridium, Streptococcus, Klebsiella and Escherichia. CONCLUSIONS Probiotic supplementation to preterm infants seems to increase the relative abundance of the supplemented strains with a concurrent decrease of potentially pathogenic species. These probiotic-induced microbial alterations may contribute to the decreased risk of health complications such as NEC. Future trials, including omics technologies to analyse both microbiota composition and function linked to health outcomes, are warranted to identify the optimal mixture and dosing of probiotic strains. PROSPERO REGISTRATION NUMBER CRD42023385204.
Collapse
Affiliation(s)
- Kayleigh Vievermanns
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Thomas H Dierikx
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Microbiology, Maastricht UMC+, Maastricht, The Netherlands
| | | | - Faridi S Jamaludin
- Medical Library AMC, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hendrik J Niemarkt
- Neonatology, Maxima Medisch Centrum locatie Veldhoven, Veldhoven, The Netherlands
- Electrical Engineering, TU Eindhoven, Eindhoven, The Netherlands
| | - Tim G J de Meij
- Pediatric Gastroenterology, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
- Pediatric Gastroenterology, Emma children's hospital amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
TAKESHITA K, TAKEI H, TANAKA S, HISHIKI H, IIJIMA Y, OGATA H, FUJISHIRO K, TOMINAGA T, KONNO Y, IWASE Y, ENDO M, ISHIWADA N, OSONE Y, TAKEMURA R, HAMADA H, SHIMOJO N. Effect of multi-strain bifidobacteria supplementation on intestinal microbiota development in low birth weight neonates: a randomized controlled trial. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:352-358. [PMID: 39364130 PMCID: PMC11444860 DOI: 10.12938/bmfh.2023-093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/21/2024] [Indexed: 10/05/2024]
Abstract
Single-strain Bifidobacterium species are commonly used as probiotics with low birth weight neonates. However, the effectiveness and safety of multi-strain Bifidobacterium supplementation are not well known. Thirty-six neonates weighing less than 2,000 g (558-1,943 g) at birth and admitted to a neonatal intensive care unit were randomly assigned to receive a single strain or triple strains of Bifidobacterium with lactulose enterally for 4 weeks from birth. The relative abundances of Staphylococcus and Bifidobacterium in the fecal microbiota at weeks 1, 2, and 4 were investigated. Based on the study results, no significant difference was detected between the two groups in the abundance of Staphylococcus; however, the triple-strain group had significantly high abundances of Bifidobacterium at weeks 2 and 4. The fecal microbiota in the triple-strain group had significantly lower alpha diversity (Bifidobacterium-enriching) after week 4 and was different from that in the single-strain group, which showed a higher abundance of Clostridium. No severe adverse events occurred in either group during the study period. Although no significant difference was detected between single- and multi-strain bifidobacteria supplementation in the colonization of Staphylococcus in the fecal microbiota of the neonates, multi-strain bifidobacteria supplementation contributed toward early enrichment of the microbiota with bifidobacteria and suppression of other pathogenic bacteria, such as Clostridium spp.
Collapse
Affiliation(s)
- Kenichi TAKESHITA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Department of Pediatrics, Chiba Rosai Hospital, 2-16
Tatsumidaihigashi, Ichihara-shi, Chiba 290-0003, Japan
| | - Haruka TAKEI
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Saori TANAKA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Haruka HISHIKI
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Yuta IIJIMA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Hitoshi OGATA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Kensuke FUJISHIRO
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Takahiro TOMINAGA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Yuki KONNO
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Yukiko IWASE
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Mamiko ENDO
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Naruhiko ISHIWADA
- Department of Infectious Diseases, Medical Mycology Research
Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8673, Japan
| | - Yoshiteru OSONE
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1
Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Ryo TAKEMURA
- Clinical and Translational Research Center, Keio University
Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hiromichi HAMADA
- Department of Pediatrics, Graduate School of Medicine, Chiba
University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Naoki SHIMOJO
- Center for Preventive Medical Sciences, Chiba University,
1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| |
Collapse
|
3
|
Tanaka S, Takahashi M, Takeshita K, Nagasawa K, Takei H, Sato H, Hishiki H, Ishiwada N, Hamada H, Kadota Y, Tochio T, Ishida T, Sasaki K, Tomita M, Osone Y, Takemura R, Shimojo N. The prebiotic effect of 1-kestose in low-birth-weight neonates taking bifidobacteria: a pilot randomized trial in comparison with lactulose. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2024; 43:329-335. [PMID: 39364124 PMCID: PMC11444857 DOI: 10.12938/bmfh.2023-079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/29/2024] [Indexed: 10/05/2024]
Abstract
Probiotics such as bifidobacteria have been given to low-birth-weight neonates (LBWNs) at risk for a disrupted gut microbiota leading to the development of serious diseases such necrotizing enterocolitis. Recently prebiotics such as lactulose are used together with bifidobacteria as synbiotics. However, faster and more powerful bifidobacteria growth is desired for better LBWN outcomes. The prebiotic 1-kestose has a higher selective growth-promoting effect on bifidobacteria and lactic acid bacteria in vitro among several oligosaccharides. Twenty-six premature neonates (less than 2,000 g) admitted to a neonatal intensive care unit (NICU) were randomly assigned to receive Bifidobacterium breve M16-V with either 1-kestose or lactulose once a day for four weeks from birth. A 16S rRNA gene analysis revealed similar increases in alpha-diversity from 7 to 28 days in both groups. The most dominant genus on both days was Bifidobacterium in both groups, with no significant difference between the two groups. Quantitative PCR analysis revealed that the number of Staphylococcus aureus tended to be lower in the 1-kestose group than in the lactulose group at 28 days. The number of Escherichia coli was higher in the 1-kestose group at 7 days. The copy number of total bacteria in the 1-kestose group was significantly higher than that in the lactulose group at 3 time points, 7, 14, and 28 days. No severe adverse events occurred in either group during the study period. l-Ketose may offer an alternative option to lactulose as a prebiotic to promote the development of gut microbiota in LBWNs.
Collapse
Affiliation(s)
- Saori Tanaka
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Department of Neonatology, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu-shi, Chiba 292-8535, Japan
| | - Mayuko Takahashi
- B Food Science Co., Ltd., 24-12 Kitahama-machi, Chita-shi, Aichi 478-0046, Japan
| | - Kenichi Takeshita
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Koo Nagasawa
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Haruka Takei
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Hironori Sato
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Haruka Hishiki
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Naruhiko Ishiwada
- Department of Infectious Diseases, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan
| | - Hiromichi Hamada
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| | - Yoshihiro Kadota
- B Food Science Co., Ltd., 24-12 Kitahama-machi, Chita-shi, Aichi 478-0046, Japan
| | - Takumi Tochio
- B Food Science Co., Ltd., 24-12 Kitahama-machi, Chita-shi, Aichi 478-0046, Japan
| | - Tomoki Ishida
- Department of Neonatology, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu-shi, Chiba 292-8535, Japan
| | - Koh Sasaki
- Department of Neonatology, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu-shi, Chiba 292-8535, Japan
| | - Mika Tomita
- Department of Neonatology, Kimitsu Chuo Hospital, 1010 Sakurai, Kisarazu-shi, Chiba 292-8535, Japan
| | - Yoshiteru Osone
- Department of Pediatrics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
- Perinatal Medical Center, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8677, Japan
| | - Ryo Takemura
- Clinical and Translational Research Center, Keio University Hospital, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Naoki Shimojo
- Center for Preventive Medical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan
| |
Collapse
|
4
|
Mutoh N, Moriya M, Xu C, Kato K, Arai S, Iwabuchi N, Tanaka M, Jinghua Y, Itamura R, Sakatani K, Warisawa S. Bifidobacterium breve M-16V regulates the autonomic nervous system via the intestinal environment: A double-blind, placebo-controlled study. Behav Brain Res 2024; 460:114820. [PMID: 38128887 DOI: 10.1016/j.bbr.2023.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023]
Abstract
We conducted a randomized controlled trial to investigate the potential of Bifidobacterium breve M-16 V to improve mood in humans. In this evaluation, we incorporated the use of near-infrared spectroscopy (NIRS), which has been used to evaluate mood states in studies with small sample sizes. Participants were given B. breve M-16 V (20 billion cells/day) for 6 weeks, and their mood state was assessed before and after ingestion. NIRS data were collected at rest and during a mental arithmetic task (under stress). Intake of B. breve M-16 V decreased the heart rate under stress and increased levels of the GABA-like substance pipecolic acid in stool samples. In addition, B. breve M-16 V improved mood and sleep scores in participants with high anxiety levels. These results suggest that B. breve M-16 V affects the metabolites of the gut microbiota and has the potential to modulate the autonomic nervous system and to improve mood and sleep.
Collapse
Affiliation(s)
- Natsumi Mutoh
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan
| | - Masamichi Moriya
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan
| | - Chendong Xu
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan
| | - Kumiko Kato
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan
| | - Satoshi Arai
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan
| | - Noriyuki Iwabuchi
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan.
| | - Miyuki Tanaka
- Innovative Research Institute, Morinaga Milk Industry Co., Ltd., 1-83, 5-Chome, Higashihara, Zama-city, Kanagawa 252-8583, Japan
| | - Yin Jinghua
- Mishuku Hospital, 5-33-12 Kamimeguro, Meguro-ku, Tokyo 153-0051, Japan
| | - Ronko Itamura
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan
| | - Kaoru Sakatani
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan
| | - Shinichi Warisawa
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-city, Chiba 277-8563, Japan
| |
Collapse
|
5
|
Catassi G, Aloi M, Giorgio V, Gasbarrini A, Cammarota G, Ianiro G. The Role of Diet and Nutritional Interventions for the Infant Gut Microbiome. Nutrients 2024; 16:400. [PMID: 38337684 PMCID: PMC10857663 DOI: 10.3390/nu16030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The infant gut microbiome plays a key role in the healthy development of the human organism and appears to be influenced by dietary practices through multiple pathways. First, maternal diet during pregnancy and infant nutrition significantly influence the infant gut microbiota. Moreover, breastfeeding fosters the proliferation of beneficial bacteria, while formula feeding increases microbial diversity. The timing of introducing solid foods also influences gut microbiota composition. In preterm infants the gut microbiota development is influenced by multiple factors, including the time since birth and the intake of breast milk, and interventions such as probiotics and prebiotics supplementation show promising results in reducing morbidity and mortality in this population. These findings underscore the need for future research to understand the long-term health impacts of these interventions and for further strategies to enrich the gut microbiome of formula-fed and preterm infants.
Collapse
Affiliation(s)
- Giulia Catassi
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Marina Aloi
- Pediatric Gastroenterology and Liver Unit, Sapienza University of Rome, Umberto I Hospital, 00161 Rome, Italy;
| | - Valentina Giorgio
- Department of Woman and Child Health and Public Health, UOC Pediatria, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Giovanni Cammarota
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Gianluca Ianiro
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.C.); (A.G.); (G.C.)
- Department of Medical and Surgical Sciences, UOC Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
- Department of Medical and Surgical Sciences, UOC CEMAD Centro Malattie dell’Apparato Digerente, Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
6
|
Díaz R, Garrido D. Screening competition and cross-feeding interactions during utilization of human milk oligosaccharides by gut microbes. MICROBIOME RESEARCH REPORTS 2024; 3:12. [PMID: 38455082 PMCID: PMC10917614 DOI: 10.20517/mrr.2023.61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 03/09/2024]
Abstract
Background: The infant gut microbiome is a complex community that influences short- and long-term health. Its assembly and composition are governed by variables such as the feeding type. Breast milk provides infants an important supply of human milk oligosaccharides (HMO), a broad family of carbohydrates comprising neutral, fucosylated, and sialylated molecules. There is a positive association between HMOs and the overrepresentation of Bifidobacterium species in the infant gut, which is sustained by multiple molecular determinants present in the genomes of these species. Infant-gut-associated Bifidobacterium species usually share a similar niche and display similar HMO inclinations, suggesting they compete for these resources. There is also strong evidence of cross-feeding interactions between HMO-derived molecules and bifidobacteria. Methods: In this study, we screened for unidirectional and bidirectional interactions between Bifidobacterium and other species using individual HMO. Bifidobacterium bifidum and Bacteroides thetaiotaomicron increased the growth of several other species when their supernatants were used, probably mediated by the partial degradation of HMO. In contrast, Bifidobacterium longum subsp. infantis. supernatants did not exhibit positive growth. Results: Bifidobacterium species compete for lacto-N-tetraose, which is associated with reduced bidirectional growth. The outcome of these interactions was HMO-dependent, in which the two species could compete for one substrate but cross-feed on another. 2'-fucosyllactose and lacto-N-neotetraose are associated with several positive interactions that generally originate from the partial degradation of these HMOs. Conclusion: This study presents evidence for complex interactions during HMO utilization, which can be cooperative or competitive, depending on the nature of the HMO. This information could be useful for understanding how breast milk supports the growth of some Bifidobacterium species, shaping the ecology of this important microbial community.
Collapse
Affiliation(s)
| | - Daniel Garrido
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Catolica de Chile, Santiago 7820436, Chile
| |
Collapse
|
7
|
Chang HY, Lin CY, Chiang Chiau JS, Chang JH, Hsu CH, Ko MHJ, Lee HC. Probiotic supplementation modifies the gut microbiota profile of very low birth weight preterm infants during hospitalization. Pediatr Neonatol 2024; 65:55-63. [PMID: 37500417 DOI: 10.1016/j.pedneo.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/09/2023] [Accepted: 06/07/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Probiotic supplementation is increasingly being given to very low birth weight (VLBW) preterm infants. This preliminary observational study aimed to investigate the effects of multiple-strain probiotics on the gut microbiota of VLBW preterm infants. METHODS We collected meconium and stool samples on days 14, 30, and 60 after birth from 49 VLBW infants with a gestational age of <32 weeks. The infants were divided into the probiotics (n = 24) and control (n = 25) groups. The microbial composition and diversity in the gut of the two groups were analyzed using 16 S rRNA gene sequencing. RESULTS The relative abundance of Bifidobacterium and Lactobacillus was significantly higher in the probiotics group than in the control group on days 14, 30, and 60 (Bifidobacterium: p = 0.002, p < 0.0001, and p < 0.0001, respectively; Lactobacillus: p = 0.012, p < 0.0001, and p < 0.0001, respectively). The control group exhibited a significantly higher proportion of participants with a low abundance (<1%) of Bifidobacterium or Lactobacillus on days 14, 30, and 60 than those in the probiotic group. Moreover, the probiotics group exhibited a significantly lower abundance of Klebsiella on days 14 and 30 (2.4% vs. 11.6%, p = 0.037; and 7.9% vs. 16.6%, p = 0.032, respectively) and of Escherichia-Shigella on day 60 than the control group (6.1% vs. 12.3%, p = 0.013). Beta diversity analysis revealed that the microbiota profile was clearly divided into two groups on days 30 and 60 (p = 0.001). CONCLUSION Probiotic supplementation significantly increased the relative abundance of Bifidobacterium and Lactobacillus and inhibited the growth of potential pathogens. Furthermore, probiotic supplementation led to a distinct gut microbiota profile. Further research is needed to identify probiotic strains that exert significant influence on the gut microbiome and their long-term health implications in preterm infants.
Collapse
Affiliation(s)
- Hung-Yang Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chia-Ying Lin
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan
| | | | - Jui-Hsing Chang
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
| | - Chyong-Hsin Hsu
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan
| | - Mary Hsin-Ju Ko
- Department of Pediatrics, Hsinchu MacKay Memorial Hospital, Hsinchu 300, Taiwan
| | - Hung-Chang Lee
- Department of Pediatrics, MacKay Children's Hospital, Taipei 104, Taiwan; Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan.
| |
Collapse
|
8
|
Xi M, Hao G, Yao Q, Duan X, Ge W. Galactooligosaccharide Mediates NF-κB Pathway to Improve Intestinal Barrier Function and Intestinal Microbiota. Molecules 2023; 28:7611. [PMID: 38005333 PMCID: PMC10674247 DOI: 10.3390/molecules28227611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The use of antibiotics to treat diarrhea and other diseases early in life can lead to intestinal disorders in infants, which can cause a range of immune-related diseases. Intestinal microbiota diversity is closely related to dietary intake, with many oligosaccharides impacting intestinal microorganism structures and communities. Thus, oligosaccharide type and quantity are important for intestinal microbiota construction. Galactooligosaccharides (GOS) are functional oligosaccharides that can be supplemented with infant formula. Currently, information on GOS and its impact on intestinal microbiota diversity and disorders is lacking. Similarly, GOS is rarely reported within the context of intestinal barrier function. In this study, 16S rRNA sequencing, gas chromatography, and immunohistochemistry were used to investigate the effects of GOS on the intestinal microbiota and barrier pathways in antibiotic-treated mouse models. The results found that GOS promoted Bifidobacterium and Akkermansia proliferation, increased short-chain fatty acid levels, increased tight junction protein expression (occludin and ZO-1), increased secretory immunoglobulin A (SIgA) and albumin levels, significantly downregulated NF-κB expression, and reduced lipopolysaccharide (LPS), interleukin-IL-1β (IL-1β), and IL-6 levels. Also, a high GOS dose in ampicillin-supplemented animals provided resistance to intestinal damage.
Collapse
Affiliation(s)
- Menglu Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Guo Hao
- Shaanxi Sheep Milk Product Quality Supervision and Inspection Center, Xi’an 710000, China;
| | - Qi Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Xuchang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (M.X.); (Q.Y.)
| |
Collapse
|
9
|
Tsuji M, Tanaka N, Koike H, Sato Y, Shimoyama Y, Itoh A. Various Organ Damages in Rats with Fetal Growth Restriction and Their Slight Attenuation by Bifidobacterium breve Supplementation. Life (Basel) 2023; 13:2005. [PMID: 37895387 PMCID: PMC10607936 DOI: 10.3390/life13102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/14/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Children with fetal growth restriction (FGR) and its resultant low birthweight (LBW) are at a higher risk of developing various health problems later in life, including renal diseases, metabolic syndrome, and sarcopenia. The mechanism through which LBW caused by intrauterine hypoperfusion leads to these health problems has not been properly investigated. Oral supplementation with probiotics is expected to reduce these risks in children. In the present study, rat pups born with FGR-LBW after mild intrauterine hypoperfusion were supplemented with either Bifidobacterium breve (B. breve) or a vehicle from postnatal day 1 (P1) to P21. Splanchnic organs and skeletal muscles were evaluated at six weeks of age. Compared with the sham group, the LBW-vehicle group presented significant changes as follows: overgrowth from infancy to childhood; lighter weight of the liver, kidneys, and gastrocnemius and plantaris muscles; reduced height of villi in the ileum; and increased depth of crypts in the jejunum. Some of these changes were milder in the LBW-B.breve group. In conclusion, this rat model could be useful for investigating the mechanisms of how FGR-LBW leads to future health problems and for developing interventions for these problems. Supplementation with B. breve in early life may modestly attenuate these problems.
Collapse
Affiliation(s)
- Masahiro Tsuji
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto 605-8501, Japan
| | - Nao Tanaka
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto 605-8501, Japan
| | - Hitomi Koike
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto 605-8501, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya 466-8560, Japan;
| | - Yoshie Shimoyama
- Department of Pathology, Nagoya University Hospital, Nagoya 466-8560, Japan
| | - Ayaka Itoh
- Department of Food and Nutrition, Kyoto Women’s University, Kyoto 605-8501, Japan
| |
Collapse
|
10
|
Chen X, Shi Y. Determinants of microbial colonization in the premature gut. Mol Med 2023; 29:90. [PMID: 37407941 DOI: 10.1186/s10020-023-00689-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Abnormal microbial colonization in the gut at an early stage of life affects growth, development, and health, resulting in short- and long-term adverse effects. Microbial colonization patterns of preterm infants differ from those of full-term infants in that preterm babies and their mothers have more complicated prenatal and postnatal medical conditions. Maternal complications, antibiotic exposure, delivery mode, feeding type, and the use of probiotics may significantly shape the gut microbiota of preterm infants at an early stage of life; however, these influences subside with age. Although some factors and processes are difficult to intervene in or avoid, understanding the potential factors and determinants will help in developing timely strategies for a healthy gut microbiota in preterm infants. This review discusses potential determinants of gut microbial colonization in preterm infants and their underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China
| | - Yongyan Shi
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
11
|
Usefulness of Bifidobacterium longum BB536 in Elderly Individuals With Chronic Constipation: A Randomized Controlled Trial. Am J Gastroenterol 2023; 118:561-568. [PMID: 36216361 PMCID: PMC9973440 DOI: 10.14309/ajg.0000000000002028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
INTRODUCTION Few reports exist regarding the therapeutic effects of probiotics on chronic constipation in elderly individuals. This study evaluated the effects of Bifidobacterium longum BB536 in elderly individuals with chronic constipation. METHODS This was a randomized, double-blind placebo-controlled, parallel-group superiority trial in Japan (UMIN 000033031). Eighty older adults diagnosed with chronic constipation were randomly assigned (1:1) to receive either probiotics ( B. longum BB536, 5 × 10 10 colony-forming unit, n = 39) or placebo (n = 41) once daily for up to 4 weeks. The severity of constipation was evaluated using the Constipation Scoring System. The primary end point was the difference in the changes from baseline in the constipation scoring system total score between the 2 groups at week 4. RESULTS A total of 79 patients (mean age of 77.9 years), including 38 patients in the BB536 group and 41 in the placebo group, completed the study. The primary end point was not significant ( P = 0.074), although there was significant improvement ( P < 0.01) in the BB536 group from baseline to week 4, but there were no significant changes in the placebo group. There was a significant difference and a tendency toward a difference in the changes from baseline on the stool frequency ( P = 0.008) and failure of evacuation ( P = 0.051) subscales, respectively, at week 4 between the 2 groups. Few adverse events related to the probiotics were observed. DISCUSSION The primary end points were not significant. However, probiotic supplementation significantly improved bowel movements. These results suggest that B. longum BB536 supplementation is safe and partially effective for improving chronic constipation in elderly individuals.
Collapse
|
12
|
Therapeutic Potential of Gut Microbiota and Its Metabolite Short-Chain Fatty Acids in Neonatal Necrotizing Enterocolitis. Life (Basel) 2023; 13:life13020561. [PMID: 36836917 PMCID: PMC9959300 DOI: 10.3390/life13020561] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023] Open
Abstract
Short chain fatty acids (SCFAs), the principle end-products produced by the anaerobic gut microbial fermentation of complex carbohydrates (CHO) in the colon perform beneficial roles in metabolic health. Butyrate, acetate and propionate are the main SCFA metabolites, which maintain gut homeostasis and host immune responses, enhance gut barrier integrity and reduce gut inflammation via a range of epigenetic modifications in DNA/histone methylation underlying these effects. The infant gut microbiota composition is characterized by higher abundances of SCFA-producing bacteria. A large number of in vitro/vivo studies have demonstrated the therapeutic implications of SCFA-producing bacteria in infant inflammatory diseases, such as obesity and asthma, but the application of gut microbiota and its metabolite SCFAs to necrotizing enterocolitis (NEC), an acute inflammatory necrosis of the distal small intestine/colon affecting premature newborns, is scarce. Indeed, the beneficial health effects attributed to SCFAs and SCFA-producing bacteria in neonatal NEC are still to be understood. Thus, this literature review aims to summarize the available evidence on the therapeutic potential of gut microbiota and its metabolite SCFAs in neonatal NEC using the PubMed/MEDLINE database.
Collapse
|
13
|
ITO E, OHKI T, TOYA N, NAKAGAWA H, HORIGOME A, ODAMAKI T, XIAO JZ, KOIDO S, NISHIKAWA Y, OHKUSA T, SATO N. Impact of Bifidobacterium adolescentis in patients with abdominal aortic aneurysm: a cross-sectional study. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2023; 42:81-86. [PMID: 36660598 PMCID: PMC9816055 DOI: 10.12938/bmfh.2022-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 01/01/2023]
Abstract
The relationships between various diseases and the human gut microbiota (GM) have been revealed. However, the relationships between the human abdominal aortic aneurysm (AAA) and GM remains unknown. The aim of this cross-sectional study was to clarify the association between the human AAA and GM. Stool samples from 30 consecutive patients with AAA before aneurysm repair and those of 30 controls without vascular diseases were analyzed by 16S rRNA gene (V3-4) sequencing using an Illumina MiSeq system and QIIME 2. There was no significant difference in age (75 vs. 75 years) or gender (80% vs. 87% males) between the groups. No significant difference in GM composition was observed in principal coordinate analysis between the two groups, whereas the AAA group showed a significantly lower abundance of Bifidobacterium adolescentis (p<0.01) at the species level than the controls. This study demonstrated that the abundance of B. adolescentis decreased in patients with AAA. This is the first study to show the characteristics of the GM in patients with AAA. Studies are needed to reveal if causal relationships exists between the human AAA and GM.
Collapse
Affiliation(s)
- Eisaku ITO
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Takao OHKI
- Division of Vascular Surgery, Department of Surgery, The
Jikei University School of Medicine, 3-19-18 Nishi-shimbashi, Minato, Tokyo 105-8471,
Japan,*Corresponding author. Takao Ohki (E-mail: )
| | - Naoki TOYA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Hikaru NAKAGAWA
- Department of Surgery, Division of Vascular Surgery, The
Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa, Chiba 277-0004,
Japan
| | - Ayako HORIGOME
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Toshitaka ODAMAKI
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Jin-zhong XIAO
- Next Generation Science Institute, Morinaga Milk Industry
Co., Ltd., 5-1 Higashihara, Zama, Kanagawa 252-0004, Japan
| | - Shigeo KOIDO
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Yuriko NISHIKAWA
- Division of Gastroenterology and Hepatology, Department of
Internal Medicine, The Jikei University Kashiwa Hospital, 163-1 Kashiwa-shita, Kashiwa,
Chiba 277-0004, Japan
| | - Toshifumi OHKUSA
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Nobuhiro SATO
- Department of Microbiota Research, Juntendo University
Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
14
|
Asaoka D, Xiao J, Takeda T, Yanagisawa N, Yamazaki T, Matsubara Y, Sugiyama H, Endo N, Higa M, Kasanuki K, Ichimiya Y, Koido S, Ohno K, Bernier F, Katsumata N, Nagahara A, Arai H, Ohkusa T, Sato N. Effect of Probiotic Bifidobacterium breve in Improving Cognitive Function and Preventing Brain Atrophy in Older Patients with Suspected Mild Cognitive Impairment: Results of a 24-Week Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis 2022; 88:75-95. [PMID: 35570493 PMCID: PMC9277669 DOI: 10.3233/jad-220148] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: Probiotics have been reported to ameliorate cognitive impairment. Objective: We investigated the effect of the probiotic strain Bifidobacterium breve MCC1274 (A1) in enhancing cognition and preventing brain atrophy of older patients with mild cognitive impairment (MCI). Methods: In this RCT, 130 patients aged from 65 to 88 years old with suspected MCI received once daily either probiotic (B. breve MCC1274, 2×1010 CFU) or placebo for 24 weeks. Cognitive functions were assessed by ADAS-Jcog and MMSE tests. Participants underwent MRI to determine brain atrophy changes using Voxel-based Specific Regional Analysis System for Alzheimer’s disease (VSRAD). Fecal samples were collected for the analysis of gut microbiota composition. Results: Analysis was performed on 115 participants as the full analysis set (probiotic 55, placebo 60). ADAS-Jcog subscale “orientation” was significantly improved compared to placebo at 24 weeks. MMSE subscales “orientation in time” and “writing” were significantly improved compared to placebo in the lower baseline MMSE (< 25) subgroup at 24 weeks. VSRAD scores worsened in the placebo group; probiotic supplementation tended to suppress the progression, in particular among those subjects with progressed brain atrophy (VOI Z-score ≥1.0). There were no marked changes in the overall composition of the gut microbiota by the probiotic supplementation. Conclusion: Improvement of cognitive function was observed on some subscales scores only likely due to the lower sensitiveness of these tests for MCI subjects. Probiotics consumption for 24 weeks suppressed brain atrophy progression, suggesting that B. breve MCC1274 helps prevent cognitive impairment of MCI subjects.
Collapse
Affiliation(s)
- Daisuke Asaoka
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | - Jinzhong Xiao
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Tsutomu Takeda
- Department of Gastroenterology, Juntendo Tokyo Koto Geriatric Medical Center, Tokyo, Japan
| | | | - Takahiro Yamazaki
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoichiro Matsubara
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideki Sugiyama
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Noemi Endo
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Motoyuki Higa
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Yosuke Ichimiya
- Department of Psychiatry, Juntendo Tokyo Koto Geriatric Medical Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeo Koido
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Kazuya Ohno
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Francois Bernier
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Noriko Katsumata
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Toshifumi Ohkusa
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Department of Gastroenterology and Hepatology, The Jikei University Kashiwa Hospital, Kashiwa, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Exploring the long-term colonisation and persistence of probiotic-prophylaxis species on the gut microbiome of preterm infants: a pilot study. Eur J Pediatr 2022; 181:3389-3400. [PMID: 35796792 PMCID: PMC9395480 DOI: 10.1007/s00431-022-04548-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/19/2022] [Accepted: 06/23/2022] [Indexed: 11/14/2022]
Abstract
Preterm infants suffer from a higher incidence of acute diseases such as necrotising enterocolitis and sepsis. This risk can be mitigated through probiotic prophylaxis during admission. This reduction in risk is likely the result of acute modulation of the gut microbiome induced by probiotic species, which has been observed to occur up until discharge. We aimed to determine if this modulation, and the associated probiotic species, persisted beyond discharge. We conducted both a cross-sectional analysis (n = 18), at ~ 18 months of age, and a longitudinal analysis (n = 6), from admission to 18 months of the gut microbiome of preterm infants using both shotgun metagenomics and 16S rRNA profiling respectively. The 16S amplicon sequencing revealed that the microbial composition of the probiotic-supplemented infants changed dramatically over time, stabilising at discharge. However, species from the probiotic Infloran®, as well as positive modulatory effects previously associated with supplementation, do not appear to persist beyond discharge and once prophylaxis has stopped. Conclusions: Although differences exist between supplemented and non-supplemented groups, the implications of these differences remain unclear. Additionally, despite a lack of long-term colonisation, the presence of probiotics during early neonatal life may still have modulatory effects on the microbiome assembly and immune system training. What is Known: • Evidence suggests modulation of the microbiome occurs during probiotic prophylaxis, which may support key taxa that exert positive immunological benefits. • Some evidence suggests that this modulation can persist post-prophylaxis. What is New: • We present support for long-term modulation in association with probiotic prophylaxis in a cohort of infants from North Queensland Australia. • We also observed limited persistence of the probiotic species post-discharge.
Collapse
|
16
|
Ojima MN, Yoshida K, Sakanaka M, Jiang L, Odamaki T, Katayama T. Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics. Curr Opin Biotechnol 2021; 73:108-120. [PMID: 34375845 DOI: 10.1016/j.copbio.2021.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Bifidobacteria are widely used as a probiotic for their health-promoting effects. To promote their growth, bifidogenic prebiotics, including human milk oligosaccharides (HMOs), have been added to supplements and infant formula. However, the efficacy of both probiotic and prebiotic interventions is often debated, as clinical responses vary significantly by case. Here, we review clinical studies that aimed to proliferate human-residential Bifidobacterium (HRB) strains in the gut, and we highlight the difference between responders and non-responders to such interventions through an ecological, niche-based perspective and an examination of the prevalence of genes responsible for prebiotic assimilation in HRB genomes. We discuss the criteria necessary to better evaluate the efficacy of probiotic and prebiotic interventions and the recent therapeutic potential shown by synbiotics.
Collapse
Affiliation(s)
- Miriam N Ojima
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Keisuke Yoshida
- Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 252-8583, Japan
| | - Mikiyasu Sakanaka
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Lin Jiang
- School of Biology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Toshitaka Odamaki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan; Next Generation Science Institute, Morinaga Milk Industry Co., Ltd., Zama, Kanagawa, 252-8583, Japan
| | - Takane Katayama
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
17
|
Gelatin-Graphene Oxide Nanocomposite Hydrogels for Kluyveromyces lactis Encapsulation: Potential Applications in Probiotics and Bioreactor Packings. Biomolecules 2021; 11:biom11070922. [PMID: 34206397 PMCID: PMC8302002 DOI: 10.3390/biom11070922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Nutraceutical formulations based on probiotic microorganisms have gained significant attention over the past decade due to their beneficial properties on human health. Yeasts offer some advantages over other probiotic organisms, such as immunomodulatory properties, anticancer effects and effective suppression of pathogens. However, one of the main challenges for their oral administration is ensuring that cell viability remains high enough for a sustained therapeutic effect while avoiding possible substrate inhibition issues as they transit through the gastrointestinal (GI) tract. Here, we propose addressing these issues using a probiotic yeast encapsulation strategy, Kluyveromyces lactis, based on gelatin hydrogels doubly cross-linked with graphene oxide (GO) and glutaraldehyde to form highly resistant nanocomposite encapsulates. GO was selected here as a reinforcement agent due to its unique properties, including superior solubility and dispersibility in water and other solvents, high biocompatibility, antimicrobial activity, and response to electrical fields in its reduced form. Finally, GO has been reported to enhance the mechanical properties of several materials, including natural and synthetic polymers and ceramics. The synthesized GO-gelatin nanocomposite hydrogels were characterized in morphological, swelling, mechanical, thermal, and rheological properties and their ability to maintain probiotic cell viability. The obtained nanocomposites exhibited larger pore sizes for successful cell entrapment and proliferation, tunable degradation rates, pH-dependent swelling ratio, and higher mechanical stability and integrity in simulated GI media and during bioreactor operation. These results encourage us to consider the application of the obtained nanocomposites to not only formulate high-performance nutraceuticals but to extend it to tissue engineering, bioadhesives, smart coatings, controlled release systems, and bioproduction of highly added value metabolites.
Collapse
|