1
|
de Carvalho Alves J, de Souza CO, de Matos Santos L, Viana SNA, de Jesus Assis D, Tavares PPLG, Requião EDR, Ferro JMRBDS, Roselino MN. Licuri Kernel ( Syagrus coronata (Martius) Beccari): A Promising Matrix for the Development of Fermented Plant-Based Kefir Beverages. Foods 2024; 13:2056. [PMID: 38998561 PMCID: PMC11240999 DOI: 10.3390/foods13132056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
New licuri-based kefir beverages were obtained using water kefir grains as fermentation inoculum (1, 2.5, and 5%) under different fermentation times (24 and 48 h). Metagenomic sequencing of the kefir grains adapted to the aqueous licuri extract revealed Lactobacillus hilgardii and Brettanomyces bruxellensis to be predominant in this inoculum. The excellent adaptation of the kefir grains to the licuri extract raised the possibility of prebiotic action of these almonds. The beverages showed acidity values between 0.33 ± 0.00 and 0.88 ± 0.00 mg lactic acid/100 mL and pH between 3.52 ± 0.01 and 4.29 ± 0.04. The viability of lactic acid bacteria in the fermented beverages was equal to or greater than 108 CFU/mL, while yeasts were between 104 and 105 CFU/mL. There were significant differences (p < 0.05) in the proximate composition of the formulations, especially in the protein (1.37 ± 0.33-2.16 ± 0.84) and carbohydrate (5.86 ± 0.19-11.51 ± 1.26) contents. In addition, all the samples showed good stability in terms of acidity, pH, and viability for LAB and yeasts during 28 days of storage (4 °C). Overall, the beverages showed a dominant yellow-green color, non-Newtonian pseudoplastic behavior, and high mean scores in the sensory evaluation. This study provided evidence of the emerging potential of licuri in the plant-based beverage industry.
Collapse
Affiliation(s)
- Janaína de Carvalho Alves
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
| | - Carolina Oliveira de Souza
- Northeast Biotechnology Network, Institute of Health Sciences, Federal University of Bahia, Av. Reitor Miguel Calmon, s/n, Salvador 40231-300, Brazil
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Livia de Matos Santos
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Suelen Neris Almeida Viana
- Graduate Program in Food Science, Faculty of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | - Denilson de Jesus Assis
- School of Exact and Technological Sciences, Salvador University, Av. Tancredo Neves, 2131, Salvador 41820-021, Brazil
- Graduate Program in Chemical Engineering (PPEQ), Polytechnic School, Federal University of Bahia, R. Prof. Aristídes Novis, 2, Salvador 40210-630, Brazil
| | | | - Elis Dos Reis Requião
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
| | | | - Mariana Nougalli Roselino
- College of Pharmacy, Federal University of Bahia, R. Barão de Jeremoabo, 147, Salvador 40170-115, Brazil
- Postgraduate Program in Microbiology (PPG-MICRO), Institute of Biology, Federal University of Bahia, R. Barão de Jeremoabo, 668, Salvador 40170-115, Brazil
| |
Collapse
|
2
|
Michielsen S, Vercelli GT, Cordero OX, Bachmann H. Spatially structured microbial consortia and their role in food fermentations. Curr Opin Biotechnol 2024; 87:103102. [PMID: 38461750 DOI: 10.1016/j.copbio.2024.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 03/12/2024]
Abstract
Microbial consortia are important for the fermentation of foods. They bring combined functionalities to the fermented product, but stability and product consistency of fermentations with complex consortia can be hard to control. Some of these consortia, such as water- and milk-kefir and kombucha, grow as multispecies aggregates or biofilms, in which micro-organisms taking part in a fermentation cascade are spatially organized. The spatial organization of micro-organisms in these aggregates can impact what metabolic interactions are realized in the consortia, ultimately affecting the growth dynamics and evolution of microbes. A better understanding of such spatially structured communities is of interest from the perspective of microbial ecology and biotechnology, as multispecies aggregates can be used to valorize energy-rich substrates, such as plant-based substrates or side streams from the food industry.
Collapse
Affiliation(s)
- Sabine Michielsen
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands
| | - Gabriel T Vercelli
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Otto X Cordero
- Department of Civil and Environmental Engineering, 15 Vassar St, Cambridge, MA 02139, USA
| | - Herwig Bachmann
- Systems Biology Lab, A-LIFE/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, the Netherlands; Microbiology Department, NIZO Food Research, Ede, the Netherlands.
| |
Collapse
|
3
|
Gökırmaklı Ç, Şatır G, Guzel‐Seydim ZB. Microbial viability and nutritional content of water kefir grains under different storage conditions. Food Sci Nutr 2024; 12:4143-4150. [PMID: 38873456 PMCID: PMC11167166 DOI: 10.1002/fsn3.4074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/18/2024] [Accepted: 02/24/2024] [Indexed: 06/15/2024] Open
Abstract
Water kefir grains are an important source of probiotics, mainly containing lactic acid bacteria and yeasts. The aim of this study is to investigate the changes in microbial and chemical properties of water kefir grains during 1-month storage at +4°C and -18°C. The initial content of lactobacilli, lactococci, and yeast in water kefir grains was 6.06, 6.33, and 5.93 log CFU/g, respectively. The number of lactobacilli, Lactobacillus acidophilus, and Bifidobacterium spp. in the water kefir grains were comparable, with slight changes at the end of refrigerated storage (p > .05). Lactococci and yeasts decreased significantly after both storage conditions compared to the initial content (p < .05). The dry matter and ash contents remained unchanged during storage (p > .05). Water kefir grains contained significant amounts of calcium, vitamin B2, vitamin B6, vitamin B7, and vitamin B12. Storage at both +4°C and -18°C did not affect the mineral and vitamin contents, except for Cu and Vitamin B2. The results indicate that the water kefir grains remained viable after storage at both temperatures. If water kefir grains need to be stored, it is recommended to store them at +4°C in sugared water as it ensures better survivability of the microbiota of the grains.
Collapse
Affiliation(s)
- Çağlar Gökırmaklı
- Department of Food EngineeringSuleyman Demirel UniversityIspartaTurkey
| | - Gülçin Şatır
- Department of Nutrition and DieteticsSuleyman Demirel UniversityIspartaTurkey
| | | |
Collapse
|
4
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Şafak H, Gün İ, Tudor Kalit M, Kalit S. Physico-Chemical, Microbiological and Sensory Properties of Water Kefir Drinks Produced from Demineralized Whey and Dimrit and Shiraz Grape Varieties. Foods 2023; 12:foods12091851. [PMID: 37174389 PMCID: PMC10177904 DOI: 10.3390/foods12091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Water kefir grains cannot grow in milk. Therefore, the aim of this study was to investigate whether water kefir grains can show activity in demineralized whey, an environment containing lactose as a carbon source. The physicochemical, microbiological and sensory properties of water kefir prepared from demineralized whey containing 2% and 5% lactose and raisins or grape juice from two grape varieties (Dimrit and Shiraz) were investigated. It was found that the protein content of the water kefir increased significantly (p < 0.05), especially when grape juice was added. The total soluble solids and viscosity of the samples with grape addition increased significantly (p < 0.05). Total phenolic content and antioxidant capacity increased significantly with grape addition (p < 0.05), with the effect of Shiraz grape being more pronounced. In general, it was found that the content of K, P, Na, Ca and Mg was higher in the samples with grape addition. The sensory properties of water kefir made from dWhey with 2% lactose and grape juice were better. It was also confirmed that viability of water kefir microbiota is better in water kefir drink made from dWhey with 2% lactose due to higher pH value in comparison to dWhey with 5% lactose.
Collapse
Affiliation(s)
- Havva Şafak
- Health Sciences Institute, Department of Animal Products Hygiene and Technology, Burdur Mehmet Akif Ersoy University, 15100 Burdur, Türkiye
| | - İlhan Gün
- Food Processing Department, Burdur Vocational School of Food, Agriculture and Livestock, Burdur Mehmet Akif Ersoy University, 15100 Burdur, Türkiye
| | - Milna Tudor Kalit
- Department of Dairy Science, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Samir Kalit
- Department of Dairy Science, University of Zagreb Faculty of Agriculture, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
6
|
Wilches‐López L, Correa‐Espinal A, Pérez‐Monterroza EJ, Rojas LF. Metataxonomic and metabolic evaluation of three water kefir microbiomes cultured in sugar cane juice. J FOOD PROCESS ENG 2023. [DOI: 10.1111/jfpe.14281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisett Wilches‐López
- Universidad de Antioquia Escuela de Microbiología, Grupo de Biotransformación Medellín Colombia
| | - Alexander Correa‐Espinal
- Departamento de Ingeniería de la Organización Facultad de Minas—Sede Medellín Universidad Nacional de Colombia Medellín Colombia
| | - Ezequiel José Pérez‐Monterroza
- Facultad de Ciencias Administrativas, Económicas y Contables Universidad Católica Luis Amigó, Programa de Gastronomía Medellín Colombia
| | - Luisa F. Rojas
- Universidad de Antioquia Escuela de Microbiología, Grupo de Biotransformación Medellín Colombia
| |
Collapse
|
7
|
Cufaoglu G, Erdinc AN. An alternative source of probiotics: Water kefir. FOOD FRONTIERS 2023. [DOI: 10.1002/fft2.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Gizem Cufaoglu
- Faculty of Veterinary Medicine Department of Food Hygiene and Technology Kirikkale University Kirikkale Turkey
| | - Ayse Nur Erdinc
- Faculty of Veterinary Medicine Department of Food Hygiene and Technology Kirikkale University Kirikkale Turkey
| |
Collapse
|
8
|
Kurniawan SB, Imron MF, Sługocki Ł, Nowakowski K, Ahmad A, Najiya D, Abdullah SRS, Othman AR, Purwanti IF, Hasan HA. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155564. [PMID: 35504385 DOI: 10.1016/j.scitotenv.2022.155564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Bioflocculants gain attention as alternatives to chemical flocculants because they are more environmentally friendly and highly biodegradable. This study aims to improve the bioflocculant production by Serratia marcescens using one-variable-at-a-time (OVAT) analysis and analyze its flocculating activity performance, toxicity, and the flocculation mechanism. The effect of multiple variables including initial inoculum size, pH, mixing speed, temperature, growth medium, and incubation period was assessed through OVAT. Flocculating activity was then determined via jar test analysis, and toxicity test was performed using Daphnia magna and Daphnia pulex. The flocculation mechanism was determined via particle size distribution and zeta potential analysis. The optimum conditions for the improved bioflocculant production were as follows: 10% v/v initial inoculum size, pH 7, mixing speed of 150 rpm, room temperature, nutrient broth medium, and 72 h of incubation period. Scanning electron microscopy showed flake-like intact structure with coarse surface. The produced bioflocculant showed flocculating activity of 48% in 5227 ± 580 NTU initial kaolin turbidity with 1 mg/L concentration and 5% v/v dosage of bioflocculant, following the second-order kinetics. Toxicity test to D. magna and D. pulex showed the 48 h LC50 values of 8.06 and 6.42 g/L, respectively; these values are greatly higher than the fabricated chemical flocculants. The flocculation process using bioflocculant produced by S. marcescens was suggested to occur via bridging mechanism because it greatly affected the particle size distribution. Results indicated that bioflocculant produced by S. marcescens is much environmentally friendly and has great potential for turbidity removal in water/wastewater.
Collapse
Affiliation(s)
- Setyo Budi Kurniawan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Muhammad Fauzul Imron
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia.
| | - Łukasz Sługocki
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland; Center of Molecular Biology and Biotechnology, University of Szczecin, Wąska 13, 71-715 Szczecin, Poland
| | - Kacper Nowakowski
- Department of Hydrobiology, Institute of Biology, University of Szczecin, Felczaka 3c, 71-712 Szczecin, Poland
| | - Azmi Ahmad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Polytechnic Education and Community College, Ministry of Higher Education, 62100 Putrajaya, Malaysia
| | - Dhuroton Najiya
- Study Program of Environmental Engineering, Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Kampus C UNAIR, Jalan Mulyorejo, Surabaya 60115, Indonesia
| | - Siti Rozaimah Sheikh Abdullah
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | - Ahmad Razi Othman
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ipung Fitri Purwanti
- Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya 60111, Indonesia
| | - Hassimi Abu Hasan
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
9
|
Laureys D, Leroy F, Vandamme P, De Vuyst L. Backslopping Time, Rinsing of the Grains During Backslopping, and Incubation Temperature Influence the Water Kefir Fermentation Process. Front Microbiol 2022; 13:871550. [PMID: 35602025 PMCID: PMC9120925 DOI: 10.3389/fmicb.2022.871550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
For eight backslopping steps, eight series of water kefir fermentation processes differing in backslopping time and rinsing of the grains during each backslopping step and eight series of fermentation processes differing in incubation temperature and backslopping time were followed. Short backslopping times resulted in high relative abundances of Liquorilactobacillus nagelii and Saccharomyces cerevisiae, intermediate backslopping times in high relative abundances of Leuconostoc pseudomesenteroides, and long backslopping times in high relative abundances of Oenococcus sicerae and Dekkera bruxellensis. When the grains were rinsed during each backslopping step, the relative abundances of Lentilactobacillus hilgardii and Leuc. pseudomesenteroides increased and those of D. bruxellensis and Liql. nagelii decreased. Furthermore, rinsing of the grains during each backslopping step resulted in a slightly higher water kefir grain growth and lower metabolite concentrations. The relative abundances of Liquorilactobacillus mali were highest at 17°C, those of Leuc. pseudomesenteroides at 21 and 25°C, and those of Liql. nagelii at 29°C. With a kinetic modeling approach, the impact of the temperature and rinsing of the grains during the backslopping step on the volumetric production rates of the metabolites was determined.
Collapse
Affiliation(s)
- David Laureys
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Frédéric Leroy
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Frédéric Leroy
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
10
|
From Milk Kefir to Water Kefir: Assessment of Fermentation Processes, Microbial Changes and Evaluation of the Produced Beverages. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8030135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The aim of the present study was to investigate the feasibly of using traditional milk kefir grains for the production of water kefir-like beverages and assess the changes in the physicochemical characteristics and the microbial populations of the fermented beverages. To this end, experiments of milk fermentation were primarily conducted at different temperatures and upon selection of the optimal, a gradual substitution of the substrate was performed by replacing milk from a sucrose-based solution. After the successful fermentation of the sucrose substrate, fruit juices were used as fermentation substrates. Sensory evaluation of the sugar-based beverages was also performed in order to access their acceptability for consumption. According to the results, the transition from milk to water kefir is indeed feasible, leading to the production of beverages with relatively higher ethanol concentrations (up to 2.14 ± 0.12% w/v) than milk kefir and much lower lactic acid concentrations (up to 0.16 ± 0.01% w/v). During the fermentation of the sugary substrates, yeasts seemed to be dominant over lactic acid bacteria, in contrast to what was observed in the case of milk kefir, where LAB dominated. The sensory evaluation revealed that all sugar-based beverages were acceptable for consumption, with the fruit-based ones obtaining, though, a better score in all attributes.
Collapse
|
11
|
Chan M, Liu D, Wu Y, Yang F, Howell K. Microorganisms in Whole Botanical Fermented Foods Survive Processing and Simulated Digestion to Affect Gut Microbiota Composition. Front Microbiol 2022; 12:759708. [PMID: 35035384 PMCID: PMC8757042 DOI: 10.3389/fmicb.2021.759708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
Botanical fermented foods have been shown to improve human health, based on the activity of potentially beneficial lactic acid bacteria (LAB) and yeasts and their metabolic outputs. However, few studies have explored the effects of prolonged storage and functional spices on microbial viability of whole fermented foods from fermentation to digestion. Even fewer have assessed their impact on the gut microbiota. Our study investigated the effects of production processes on LAB and yeast microbial viability and gut microbiota composition. We achieved this by using physicochemical assessments and an in vitro gastrointestinal and a porcine gut microbiota model. In low-salt sauerkraut, we assessed the effects of salt concentration, starter cultures, and prolonged storage, and in tibicos, prolonged storage and the addition of spices cayenne, ginger, and turmeric. In both food matrices, LAB counts significantly increased (p<0.05), reaching a peak of 7–8 log cfu/g, declining to 6–6.5 log cfu/g by day 96. Yeast viability remained at 5–6 log cfu/g in tibicos. Ginger tibicos had significantly increased LAB and yeast viability during fermentation and storage (p<0.05). For maximum microbial consumption, tibicos should be consumed within 28days, and sauerkraut, 7weeks. Simulated upper GI digestion of both products resulted in high microbial survival rates of 70–80%. The 82% microbial survival rate of cayenne tibicos was significantly higher than other treatments (p<0.05). 16S rRNA sequencing of simulated porcine colonic microbiota showed that both spontaneously fermented sauerkraut and tibicos increase the relative abundance of Megasphaera 85-fold. These findings will inform researchers, producers, and consumers about the factors that affect the microbial content of fermented foods, and their potential effects on the gut.
Collapse
Affiliation(s)
- Miin Chan
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Di Liu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Yingying Wu
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Fan Yang
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| | - Kate Howell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Pendón MD, Bengoa AA, Iraporda C, Medrano M, Garrote GL, Abraham AG. Water kefir: Factors affecting grain growth and health-promoting properties of the fermented beverage. J Appl Microbiol 2021; 133:162-180. [PMID: 34822204 DOI: 10.1111/jam.15385] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023]
Abstract
Nowadays, the interest in the consumption of healthy foods has increased as well as the homemade preparation of artisanal fermented product. Water kefir is an ancient drink of uncertain origin, which has been passed down from generation to generation and is currently consumed practically all over the world. Considering the recent and extensive updates published on sugary kefir, this work aims to shed light on the scientific works that have been published so far in relation to this complex ecosystem. We focused our review evaluating the factors that affect the beverage microbial and chemical composition that are responsible for the health attribute of water kefir as well as the grain growth. The microbial ecosystem that constitutes the grains and the fermented consumed beverage can vary according to the fermentation conditions (time and temperature) and especially with the use of different substrates (source of sugars, additives as fruits and molasses). In this sense, the populations of microorganisms in the beverage as well as the metabolites that they produce varies and in consequence their health properties. Otherwise, the knowledge of the variables affecting grain growth are also discussed for its relevance in maintenance of the starter biomass as well as the use of dextran for technological application.
Collapse
Affiliation(s)
- María Dolores Pendón
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Ana Agustina Bengoa
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Carolina Iraporda
- Departamento de Ingeniería Química y Tecnología de los Alimentos, Facultad de Ingeniería, UNCPBA, Olavarría, Argentina
| | - Micaela Medrano
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Graciela L Garrote
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina
| | - Analía G Abraham
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, UNLP-CIC-CONICET), La Plata, Argentina.,Área Bioquímica y Control de Alimentos, Facultad de Ciencias Exactas, UNLP, La Plata, Argentina
| |
Collapse
|
13
|
Köhler S, Schmacht M, Troubounis AHL, Ludszuweit M, Rettberg N, Senz M. Tradition as a Stepping Stone for a Microbial Defined Water Kefir Fermentation Process: Insights in Cell Growth, Bioflavoring, and Sensory Perception. Front Microbiol 2021; 12:732019. [PMID: 35910583 PMCID: PMC9336596 DOI: 10.3389/fmicb.2021.732019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
A process development from a traditional grain-based fermentation to a defined water kefir fermentation using a co-culture of one lactic acid bacterium and one yeast was elaborated as a prerequisite for an industrially scalable, controllable, and reproducible process. Further, to meet a healthy lifestyle, a low ethanol-containing product was aimed for. Five microbial strains—Hanseniaspora valbyensis, Dekkera bruxellensis, Saccharomyces cerevisiae, Liquorilactobacillus nagelii, and Leuconostoc mesenteroides—were used in pairs in order to examine their influence on the fermentation progress and the properties of the resulting water kefir products against grains as a control. Thereby, the combination of H. valbyensis and L. mesenteroides provided the best-rated water kefir beverage in terms of taste and low ethanol concentrations at the same time. As a further contribution to harmonization and reduction of complexity, the usage of dried figs in the medium was replaced by fig syrup, which could have been proven as an adequate substitute. However, nutritional limitations were faced afterward, and thus, an appropriate supplementation strategy for yeast extract was established. Finally, comparative trials in 5-L scale applying grains as well as a defined microbial consortium showed both water kefir beverages characterized by a pH of 3.14, and lactic acid and aromatic sensory properties. The product resulting from co-culturing outperformed the grain-based one, as the ethanol level was considerably lower in favor of an increased amount of lactic acid. The possibility of achieving a water kefir product by using only two species shows high potential for further detailed research of microbial interactions and thus functionality of water kefir.
Collapse
Affiliation(s)
- Sarah Köhler
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
| | - Maximilian Schmacht
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
- Technische Universität Berlin, Faculty III Process Sciences, Chair of Bioprocess Engineering, Institute of Biotechnology, Berlin, Germany
- *Correspondence: Maximilian Schmacht,
| | - Aktino H. L. Troubounis
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
| | - Marie Ludszuweit
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
| | - Nils Rettberg
- Research Institute for Beer and Beverage Analysis, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
| | - Martin Senz
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing (VLB) in Berlin, Berlin, Germany
- Martin Senz,
| |
Collapse
|