1
|
Breen P, Zimbric M, Caverly LJ. Itaconic acid inhibits nontuberculous mycobacterial growth in pH dependent manner while 4-octyl-itaconic acid enhances THP-1 clearance of nontuberculous mycobacteria in vitro. PLoS One 2024; 19:e0303516. [PMID: 38728330 PMCID: PMC11086914 DOI: 10.1371/journal.pone.0303516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
Increasingly prevalent, nontuberculous mycobacteria (NTM) infections affect approximately 20% of people with cystic fibrosis (CF). Previous studies of CF sputum identified lower levels of the host metabolite itaconate in those infected with NTM. Itaconate can inhibit the growth of M. tuberculosis (MTB) in vitro via the inhibition of the glyoxylate cycle enzyme (ICL), but its impact on NTM is unclear. To test itaconic acid's (IA) effect on NTM growth, laboratory and CF clinical strains of Mycobacterium abscessus and Mycobacterium avium were cultured in 7H9 minimal media supplemented with 1-10 mM of IA and short-chain fatty acids (SCFA). M. avium and M. abscessus grew when supplemented with SCFAs, whereas the addition of IA (≥ 10 mM) completely inhibited NTM growth. NTM supplemented with acetate or propionate and 5 mM IA displayed slower growth than NTM cultured with SCFA and ≤ 1 mM of IA. However, IA's inhibition of NTM was pH dependent; as similar and higher quantities (100 mM) of pH adjusted IA (pH 7) did not inhibit growth in vitro, while in an acidic minimal media (pH 6.1), 1 to 5 mM of non-pH adjusted IA inhibited growth. None of the examined isolates displayed the ability to utilize IA as a carbon source, and IA added to M. abscessus isocitrate lyase (ICL) decreased enzymatic activity. Lastly, the addition of cell-permeable 4-octyl itaconate (4-OI) to THP-1 cells enhanced NTM clearance, demonstrating a potential role for IA/itaconate in host defense against NTM infections.
Collapse
Affiliation(s)
- Paul Breen
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Madsen Zimbric
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| | - Lindsay J. Caverly
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States of America
| |
Collapse
|
2
|
Neo DM, Clatworthy AE, Hung DT. A dual-plasmid CRISPR/Cas9-based method for rapid and efficient genetic disruption in Mycobacterium abscessus. J Bacteriol 2024; 206:e0033523. [PMID: 38319218 PMCID: PMC10955840 DOI: 10.1128/jb.00335-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024] Open
Abstract
Mycobacterium abscessus is increasingly recognized for causing infections that are notoriously difficult to treat, owing to its large arsenal of intrinsic antibiotic resistance mechanisms. Tools for the genetic manipulation of the pathogen are critical for enabling a better understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods are largely recombination-based, which are relatively inefficient. Meanwhile, CRISPR/Cas9 has revolutionized the field of genome editing including its recent adaptation for use in mycobacteria. In this study, we report a streamlined and efficient method for rapid genetic disruptions in M. abscessus. Harnessing the CRISPR1 loci from Streptococcus thermophilus, we have developed a dual-plasmid workflow that introduces Cas9 and sgRNA cassettes in separate steps but requires no other additional factors to engineer mutations in single genes or multiple genes simultaneously or sequentially using multiple targeting sgRNAs. Importantly, the efficiency of mutant generation is several orders of magnitude higher than reported for homologous recombination-based methods. This work, thus, reports the first application of CRISPR/Cas9 for gene editing in M. abscessus and is an important tool in the arsenal for the genetic manipulation of this human pathogen. IMPORTANCE Mycobacterium abscessus is an opportunistic pathogen of increasing clinical importance due to its poor clinical outcomes and limited treatment options. Drug discovery and development in this highly antibiotic-resistant species will require further understanding of M. abscessus biology, pathogenesis, and antibiotic resistance mechanisms. However, existing methods for facile genetic engineering are relatively inefficient. This study reports on the first application of CRISPR/Cas9 for gene editing in M. abscessus using a dual-plasmid workflow. We establish that our method is easily programmable, efficient, and versatile for genetic disruptions in M. abscessus. This is a critical advancement to facilitating targeted gene function studies in this emerging pathogen.
Collapse
Affiliation(s)
- Donavan Marcus Neo
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Anne E. Clatworthy
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Deborah T. Hung
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Boudehen YM, Tasrini Y, Aguilera-Correa JJ, Alcaraz M, Kremer L. Silencing essential gene expression in Mycobacterium abscessus during infection. Microbiol Spectr 2023; 11:e0283623. [PMID: 37831478 PMCID: PMC10714871 DOI: 10.1128/spectrum.02836-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
IMPORTANCE Mycobacterium abscessus represents the most common rapidly growing mycobacterial pathogen in cystic fibrosis and is extremely difficult to eradicate. Essential genes are required for growth, often participate in pathogenesis, and encode valid drug targets for further chemotherapeutic developments. However, assessing the function of essential genes in M. abscessus remains challenging due to the limited spectrum of efficient genetic tools. Herein, we generated a Tet-OFF-based system allowing to knock down the expression of mmpL3, encoding the mycolic acid transporter in mycobacteria. Using this conditional mutant, we confirm the essentiality of mmpL3 in planktonic cultures, in biofilms, and during infection in zebrafish embryos. Thus, in this study, we developed a robust and reliable method to silence the expression of any M. abscessus gene during host infection.
Collapse
Affiliation(s)
- Yves-Marie Boudehen
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Yara Tasrini
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - John Jairo Aguilera-Correa
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Matthéo Alcaraz
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, Montpellier, France
- INSERM, IRIM, Montpellier, France
| |
Collapse
|
4
|
Lo HY, Long DR, Holmes EA, Penewit K, Hodgson T, Lewis JD, Waalkes A, Salipante SJ. Transposon sequencing identifies genes impacting Staphylococcus aureus invasion in a human macrophage model. Infect Immun 2023; 91:e0022823. [PMID: 37676013 PMCID: PMC10580828 DOI: 10.1128/iai.00228-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/13/2023] [Indexed: 09/08/2023] Open
Abstract
Staphylococcus aureus is a facultative intracellular pathogen in many host cell types, facilitating its persistence in chronic infections. The genes contributing to intracellular pathogenesis have not yet been fully enumerated. Here, we cataloged genes influencing S. aureus invasion and survival within human THP-1 derived macrophages using two laboratory strains (ATCC2913 and JE2). We developed an in vitro transposition method to produce highly saturated transposon mutant libraries in S. aureus and performed transposon insertion sequencing (Tn-Seq) to identify candidate genes with significantly altered abundance following macrophage invasion. While some significant genes were strain-specific, 108 were identified as common across both S. aureus strains, with most (n = 106) being required for optimal macrophage infection. We used CRISPR interference (CRISPRi) to functionally validate phenotypic contributions for a subset of genes. Of the 20 genes passing validation, seven had previously identified roles in S. aureus virulence, and 13 were newly implicated. Validated genes frequently evidenced strain-specific effects, yielding opposing phenotypes when knocked down in the alternative strain. Genomic analysis of de novo mutations occurring in groups (n = 237) of clonally related S. aureus isolates from the airways of chronically infected individuals with cystic fibrosis (CF) revealed significantly greater in vivo purifying selection in conditionally essential candidate genes than those not associated with macrophage invasion. This study implicates a core set of genes necessary to support macrophage invasion by S. aureus, highlights strain-specific differences in phenotypic effects of effector genes, and provides evidence for selection of candidate genes identified by Tn-Seq analyses during chronic airway infection in CF patients in vivo.
Collapse
Affiliation(s)
- Hsin-Yu Lo
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Dustin R. Long
- Division of Critical Care Medicine, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Elizbeth A. Holmes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Taylor Hodgson
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Janessa D. Lewis
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Gupta R, Rohde KH. Implementation of a mycobacterial CRISPRi platform in Mycobacterium abscessus and demonstration of the essentiality of ftsZ Mab. Tuberculosis (Edinb) 2023; 138:102292. [PMID: 36495774 PMCID: PMC11552333 DOI: 10.1016/j.tube.2022.102292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/04/2022]
Abstract
Mycobacterium abscessus (Mab) is a highly drug-resistant non-tuberculous mycobacterial species that causes debilitating TB-like pulmonary infections. The lack of genetic tools has hampered characterization of its extensive repertoire of virulence factors, antimicrobial resistance mechanisms, and drug targets. In this study, we evaluated the performance of a mycobacterial single plasmid CRISPRi-dCas9 system optimized for M. tuberculosis and M. smegmatis for inducible gene silencing in Mab. The efficacy of CRISPRi-mediated repression of two antibiotic resistance genes (blaMab, whiB7Mab) and two putative essential genes (ftsZMab,topAMab) was determined by measuring mRNA transcript levels and phenotypic outcomes. While our results support the utility of this mycobacterial CRISPRi dCas9Sth1 single-plasmid platform for inducible silencing of specific target genes in Mab, they also highlighted several caveats and nuances that may warrant species-specific optimization for Mab. We observed overall lower levels of gene repression in Mab including variable silencing of different target genes despite use of PAMs of similar predicted strength. In addition, leaky gene repression in the absence of inducer was noted for some genes but not others. Nonetheless, using CRISPRi we demonstrated the silencing of multiple target genes and validated ftsZMab as an essential gene and promising drug target for the first time.
Collapse
Affiliation(s)
- Rashmi Gupta
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| | - Kyle H Rohde
- Division of Immunity and Pathogenesis, College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, 6900 Lake Nona Blvd, FL, 32827, USA.
| |
Collapse
|
6
|
Lee EG, Kwak JS, Kim KH. CRISPR/Cas9-mediated generation of auxotrophic Edwardsiella piscicida mutants and immunization in olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 122:98-105. [PMID: 35114359 DOI: 10.1016/j.fsi.2022.01.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/06/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Edwardsiella piscicida has been a cause of mass mortality in cultured fish. In this study, to produce auxotrophic E. piscicida mutants, a CRISPR/Cas9 system was used instead of the traditional sacB-based allelic exchange method. Under the optimal CRISPR engineering condition, we could efficiently produce either alr or asd gene knockout E. piscicida auxotrophic mutants, and this genome editing process was much simpler and faster than the allelic exchange method. The simultaneous knockout of double auxotrophic genes (alr and asd) and the insertion of a foreign gene expression cassette in E. piscicida chromosome were also successfully performed using the established CRISPR/Cas9 system. Furthermore, to enhance the possibility to get permission as a commercial vaccine, we produced an auxotrophic E. piscicida mutant having only one nucleotide-deleted alr gene (E. piscicida △alr-1). Olive flounder (Paralichthys olivaceus) fingerlings immunized with 1 × 106 and 1 × 105 CFU/fish of E. piscicida △alr-1 showed the superior ability in the induction of serum agglutination activity and in the protection against E. piscicida compared to killed E. piscicida. However, olive flounder immunized with 1 × 107 CFU/fish of E. piscicida △alr-1 showed high mortality far before the challenge, and the isolated E. piscicida from moribund and dead fish had the wild type alr gene, suggesting the reversion of one base-deleted alr gene to original form by a second mutation in olive flounder. Therefore, investigation on the minimum number of edited nucleotide for stable maintenance of E. piscicida mutants should be further conducted.
Collapse
Affiliation(s)
- Eun Gyeong Lee
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Jun Soung Kwak
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea
| | - Ki Hong Kim
- Department of Aquatic Life Medicine, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|