1
|
Zhang Y, Gao Z, He L. Optical detection and enumeration of Escherichia coli and Salmonella enterica using a low-magnification light microscope. J Microbiol Methods 2024; 226:107041. [PMID: 39277021 DOI: 10.1016/j.mimet.2024.107041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
A rapid and cost-effective method for detecting bacterial cells from surfaces is critical to food safety, clinical hygiene, and pharmacy quality. Herein, we established an optical detection method based on a gold chip coating with 3-mercaptophenylboronic acid (3-MPBA) to capture bacterial cells, which allows for the detection and quantification of bacterial cells with a standard light microscope under low-magnification (10×) objective lens. Then, integrate the developed optical detection method with swab sampling to detect bacterial cells loading on stainless-steel surfaces. Using Salmonella enterica (SE1045) and Escherichia coli (E. coli OP50) as model bacterial cells, we achieved a capture efficiency of up to 76.0 ± 2.0 % for SE1045 cells and 81.1 ± 3.3 % for E. coli OP50 cells at 103 CFU/mL upon the optimized conditions, which slightly decreased with the increasing bacterial concentrations. Our assay showed good linear relationships between the concentrations of bacterial cells with the cell counting in images in the range of 103 -107 CFU/mL for SE1045, and 103 -108 CFU/mL for E. coli OP50 cells. The limit of detection (LOD) was 103 CFU/mL for both SE1045 and E. coli OP50 cells. A further increase in sensitivity in detecting E. coli OP50 cells was achieved through a heat treatment, enabling the LOD to be reduced as low as 102 CFU/mL. Furthermore, a preliminary application succeeded in assessing bacterial contamination on stainless-steel surfaces following integration with the approximately 40 % recovery rate, suggesting prospects for evaluating the bacteria from surfaces. The entire process was completed within around 2 h, costing merely a few dollars per sample. Considering the low cost of standard light microscopes, our method holds significant potential for practical industrial applications in bacterial contamination control on surfaces, especially in low-resource settings.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Zili Gao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Lili He
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA..
| |
Collapse
|
2
|
Botta C, Buzzanca D, Chiarini E, Chiesa F, Rubiola S, Ferrocino I, Fontanella E, Rantsiou K, Houf K, Alessandria V. Microbial contamination pathways in a poultry abattoir provided clues on the distribution and persistence of Arcobacter spp. Appl Environ Microbiol 2024; 90:e0029624. [PMID: 38647295 PMCID: PMC11107157 DOI: 10.1128/aem.00296-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The consumption of contaminated poultry meat is a significant threat for public health, as it implicates in foodborne pathogen infections, such as those caused by Arcobacter. The mitigation of clinical cases requires the understanding of contamination pathways in each food process and the characterization of resident microbiota in the productive environments, so that targeted sanitizing procedures can be effectively implemented. Nowadays these investigations can benefit from the complementary and thoughtful use of culture- and omics-based analyses, although their application in situ is still limited. Therefore, the 16S-rRNA gene-based sequencing of total DNA and the targeted isolation of Arcobacter spp. through enrichment were performed to reconstruct the environmental contamination pathways within a poultry abattoir, as well as the dynamics and distribution of this emerging pathogen. To that scope, broiler's neck skin and caeca have been sampled during processing, while environmental swabs were collected from surfaces after cleaning and sanitizing. Metataxonomic survey highlighted a negligible impact of fecal contamination and a major role of broiler's skin in determining the composition of the resident abattoir microbiota. The introduction of Arcobacter spp. in the environment was mainly conveyed by this source rather than the intestinal content. Arcobacter butzleri represented one of the most abundant species and was extensively detected in the abattoir by both metataxonomic and enrichment methods, showing higher prevalence than other more thermophilic Campylobacterota. In particular, Arcobacter spp. was recovered viable in the plucking sector with high frequency, despite the adequacy of the sanitizing procedure.IMPORTANCEOur findings have emphasized the persistence of Arcobacter spp. in a modern poultry abattoir and its establishment as part of the resident microbiota in specific environmental niches. Although the responses provided here are not conclusive for the identification of the primary source of contamination, this biogeographic assessment underscores the importance of monitoring Arcobacter spp. from the early stages of the production chain with the integrative support of metataxonomic analysis. Through such combined detection approaches, the presence of this pathogen could be soon regarded as hallmark indicator of food safety and quality in poultry slaughtering.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Davide Buzzanca
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Elisabetta Chiarini
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Francesco Chiesa
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Selene Rubiola
- Department of Veterinary Sciences, University of Torino, Torino, Italy
| | - Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | | | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Kurt Houf
- Department of Veterinary and Biosciences, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Valentina Alessandria
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| |
Collapse
|
3
|
Zhong Y, Wu J, Pan X, Liu B, Wang L. Aptamer-functionalized polydiacetylene biosensor for the detection of three foodborne pathogens. ANAL SCI 2024; 40:199-211. [PMID: 37856010 DOI: 10.1007/s44211-023-00445-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Rapid, simple and sensitive screening of foodborne pathogens is of great significance to ensure food safety. In this study, an aptamer-functionalized polydiacetylene (Apta-PDA) biosensor was developed for the detection of E. coli O157:H7, S. typhimurium or V. parahaemolyticus. First, aptamers responding to the target bacteria were modified on the surface of magnetic beads by covalent binding to form MBs-oligonucleotide conjugates for bacterial enrichment. Then, an Apta-PDA biosensor was obtained by connecting the aptamers to the PDA nanovesicles using the carbodiimide method. Molecular recognition occurred in the presence of the target bacteria, whereby the aptamer folded into a sequence-defined unique structure, resulting in an MBs-Apta/bacteria/Apta-PDA sandwich structure. Due to the optical properties of PDA, the blue-red transition of the detection system could be observed by the naked eye and quantified by the colorimetric response percentage (CR%). Under optimized conditions, the detection limits of E. coli O157:H7, S. typhimurium and V. parahaemolyticus were 39, 60 and 60 CFU/ml, respectively, with a selectivity of 100% and a reaction time of 30 min. Compared with the gold standard method, the accuracy of the three target bacteria detection reached 98%, 97.5% and 97%, respectively, and the sensitivity and specificity were both greater than 90%. The entire detection process was rapid and easy to execute without any special equipment, making this technology particularly suitable for resource-poor laboratories or regions.
Collapse
Affiliation(s)
- Yuhong Zhong
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China.
| | - Jiaqi Wu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310059, People's Republic of China
| | - Xiaoyan Pan
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Bo Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| | - Lin Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, People's Republic of China
| |
Collapse
|
4
|
Jiang K, Zhu B, Liu Y, Chen H, Yuan M, Qin Y, Brennan M, Brennan C. Effects of antimicrobial nanocomposite films packaging on the postharvest quality and spoilage bacterial communities of mushrooms ( Chanterelles). Food Chem X 2023; 20:100996. [PMID: 38144825 PMCID: PMC10740022 DOI: 10.1016/j.fochx.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/31/2023] [Accepted: 11/09/2023] [Indexed: 12/26/2023] Open
Abstract
Poly (lactic acid) (PLA) composite films with the addition of mesoporous silica nanoparticles MSN (0, 2, 4 and 6 wt%) loaded with 10 wt% citral (CIT) were prepared for application in Chanterelles packaging. Composite films with added MSN/CIT showed good mechanical properties, especially 4MSN/CIT/PLA. Changes in physicochemical properties and bacterial flora of Chanterelles during packaging and storage were tested. Compared with CIT/PLA, Chanterelles packed with 4MSN/CIT/PLA showed about 1.62-times lower browning value, 1.53-times lower electrolyte permeability, and 1.83- and 1.78-times lower PPO and POD, respectively, at 12 day. Better physicochemical properties of Chanterelles can be maintained. For bacterial flora changes, Chanterelles packaged with 4MSN/CIT/PLA had more stable flora (p < 0.05) and lower species diversity during storage (p < 0.05), effectively controlling the growth and reproduction of their dominant spoilage bacteria (Enterobacteriaceae spp). In conclusion, the composite membranes obtained by the addition of MSN/CIT to PLA have great potential in the storage of Chanterelles.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Bifen Zhu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Yudi Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia
| |
Collapse
|
5
|
Townsend A, den Bakker HC, Mann A, Murphy CM, Strawn LK, Dunn LL. 16S microbiome analysis of microbial communities in distribution centers handling fresh produce. Front Microbiol 2023; 14:1041936. [PMID: 37502401 PMCID: PMC10369000 DOI: 10.3389/fmicb.2023.1041936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/18/2023] [Indexed: 07/29/2023] Open
Abstract
Little is known about the microbial communities found in distribution centers (DCs), especially in those storing and handling food. As many foodborne bacteria are known to establish residence in food facilities, it is reasonable to assume that DCs handling foods are also susceptible to pathogen colonization. To investigate the microbial communities within DCs, 16S amplicon sequencing was completed on 317 environmental surface sponge swabs collected in DCs (n = 18) across the United States. An additional 317 swabs were collected in parallel to determine if any viable Listeria species were also present at each sampling site. There were significant differences in median diversity measures (observed, Shannon, and Chao1) across individual DCs, and top genera across all reads were Carnobacterium_A, Psychrobacter, Pseudomonas_E, Leaf454, and Staphylococcus based on taxonomic classifications using the Genome Taxonomy Database. Of the 39 16S samples containing Listeria ASVs, four of these samples had corresponding Listeria positive microbiological samples. Data indicated a predominance of ASVs identified as cold-tolerant bacteria in environmental samples collected in DCs. Differential abundance analysis identified Carnobacterium_A, Psychrobacter, and Pseudomonas_E present at a significantly greater abundance in Listeria positive microbiological compared to those negative for Listeria. Additionally, microbiome composition varied significantly across groupings within variables (e.g., DC, season, general sampling location).
Collapse
Affiliation(s)
- Anna Townsend
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | - Hendrik C. den Bakker
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, United States
| | - Amy Mann
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA, United States
| | - Claire M. Murphy
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Laura K. Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, VA, United States
| | - Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Sun XH, Qi X, Han YD, Guo ZJ, Cui CB, Lin CQ. Characteristics of changes in volatile organic compounds and microbial communities during the storage of pickles. Food Chem 2023; 409:135285. [PMID: 36586248 DOI: 10.1016/j.foodchem.2022.135285] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/27/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The variations of volatile organic compounds (VOCs) and microbial communities of three pickles during storage at 4°C for one week were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), high-throughput sequencing, and Spearman correlation analysis. A total of 50 VOCs were identified from three pickles. During storage, most alcohols, aldehydes, ketones, and esters decreased, while acids increased, and sulfides, alkenes, and phenols were relatively equal. Firmicutes, Cyanobacteria, and Proteobacteria were the predominant bacterial phyla, and Weissella, Streptophyta, Leuconostoc, Bacillariophyta, and Lactobacillus were the predominant bacterial genera in three pickles. The bacterial diversity level significantly decreased during storage (P < 0.05). Spearman correlation coefficient indicated that Leuconostoc, Lactobacillus, and Weissella were highly correlated with the flavor of pickles, while Bacillariophyta and Streptophyta were highly correlated with the flavor formation of pickles during storage. These results could contribute to a better understanding of the impact of bacteria in flavor formation during pickle storage.
Collapse
Affiliation(s)
- Xi-Han Sun
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China
| | - Xin Qi
- Pharma College, Yanbian University, Yanji, Jilin 133000, China
| | - Yu-di Han
- Convergence College, Yanbian University, Yanji, Jilin 133000, China
| | - Zhi-Jun Guo
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China
| | - Cheng-Bi Cui
- Agricultural College, Yanbian University, Yanji, Jilin 133000, China; Pharma College, Yanbian University, Yanji, Jilin 133000, China; Convergence College, Yanbian University, Yanji, Jilin 133000, China; Key Laboratory of Natural Medicine Research of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133000, China.
| | - Chang-Qing Lin
- Medical College, Yanbian University, Yanji, Jilin 133000, China.
| |
Collapse
|
7
|
Nam SJ, Kim DW, Lee SH, Koo OK. Assessment of Microbial Source Tracking Marker and Fecal Indicator Bacteria on Food-Contact Surfaces in School Cafeterias. J Food Prot 2023; 86:100035. [PMID: 36916577 DOI: 10.1016/j.jfp.2022.100035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/08/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Food poisoning outbreaks in schools can affect many students, causing physical and psychological damage and time and economic loss. Fecal indicator bacteria (FIB) have been used to monitor the contamination; however, the detection is time-consuming and confirms the contamination from all warm-blooded animals. Microbial source tracking (MST) is a molecular-based detection method that is host specific. This study aimed to evaluate MSTs and FIBs for tracing contamination in the school cafeteria. The average total aerobic count was 0.89 to 3.63 log CFU/100 cm2, and the faucets in the cooking area showed a significantly high aerobic count. The stove valve, faucet, and hand-washer were the most contaminated area, with a concentration of 1.90 to 6.80 log CFU/100 cm2 from the frequent hand contact. Escherichia coli was not detected on any surfaces, and coliform was detected on five surfaces: the sink and faucet in the food preparation area, the faucet in the cooking area, the hand-washer, and the toilet seat in the restroom with 0.33 to 3.64 log CFU/100 cm2. Human-specific crAssphage appeared on a faucet in the food preparation area, while HF183 was not detected. The result indicates that the continuous monitoring of frequent hand-contact areas is recommended to maintain the hygiene condition in the school cafeteria.
Collapse
Affiliation(s)
- Su Jin Nam
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Dong Woo Kim
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Hun Lee
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea
| | - Ok Kyung Koo
- Department of Food and Nutrition, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
8
|
Shedleur-Bourguignon F, Duchemin T, P. Thériault W, Longpré J, Thibodeau A, Hocine MN, Fravalo P. Distinct Microbiotas Are Associated with Different Production Lines in the Cutting Room of a Swine Slaughterhouse. Microorganisms 2023; 11:microorganisms11010133. [PMID: 36677425 PMCID: PMC9862343 DOI: 10.3390/microorganisms11010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The microorganisms found on fresh, raw meat cuts at a slaughterhouse can influence the meat's safety and spoilage patterns along further stages of processing. However, little is known about the general microbial ecology of the production environment of slaughterhouses. We used 16s rRNA sequencing and diversity analysis to characterize the microbiota heterogeneity on conveyor belt surfaces in the cutting room of a swine slaughterhouse from different production lines (each associated with a particular piece/cut of meat). Variation of the microbiota over a period of time (six visits) was also evaluated. Significant differences of alpha and beta diversity were found between the different visits and between the different production lines. Bacterial genera indicative of each visit and production line were also identified. We then created random forest models that, based on the microbiota of each sample, allowed us to predict with 94% accuracy to which visit a sample belonged and to predict with 88% accuracy from which production line it was taken. Our results suggest a possible influence of meat cut on processing surface microbiotas, which could lead to better prevention, surveillance, and control of microbial contamination of meat during processing.
Collapse
Affiliation(s)
- Fanie Shedleur-Bourguignon
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Tom Duchemin
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - William P. Thériault
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Jessie Longpré
- F. Ménard, Division d’Olymel s.e.c., Ange-Gardien, QC J0E 1E0, Canada
| | - Alexandre Thibodeau
- NSERC Industrial Research Chair in Meat Safety (CRSV), Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
- CRIPA Swine and Poultry Infectious Diseases Research Center, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Mounia N. Hocine
- MESuRS Laboratory (Modelling, Epidemiology and Surveillance of Health Risks), Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
| | - Philippe Fravalo
- Le Conservatoire National des Arts et Métiers (Cnam), 75003 Paris, France
- Correspondence:
| |
Collapse
|
9
|
Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiol Res 2022; 265:127207. [DOI: 10.1016/j.micres.2022.127207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/17/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
10
|
Shang C, Bu J, Song C. Preparation, Antimicrobial Properties under Different Light Sources, Mechanisms and Applications of TiO 2: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15175820. [PMID: 36079203 PMCID: PMC9457460 DOI: 10.3390/ma15175820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 05/27/2023]
Abstract
Traditional antimicrobial methods, such as antibiotics and disinfectants, may cause adverse effects, such as bacterial resistance and allergic reactions. Photocatalysts based on titanium dioxide (TiO2) have shown great potential in the field of antimicrobials because of their high efficiency, lack of pollution, and lack of side effects. This paper focuses on the antimicrobial activity of TiO2 under different light sources. To improve the photocatalytic efficiency of TiO2, we can reduce electron-hole recombination and extend the photocatalytic activity to the visible light region by doping with different ions or compounds and compounding with polymers. We can also improve the surface properties of materials, increase the contact area with microorganisms, and further enhance the resistance to microorganisms. In addition, we also reviewed their main synthesis methods, related mechanisms, and main application fields to provide new ideas for the enhancement of photocatalytic microorganism performance and application popularization in the future.
Collapse
|
11
|
Li K, Zhu Q, Jiang F, Li H, Liu J, Yu T, Du Y, Yang L, He Z, Hu S. Monitoring microbial communities in intensive care units over one year in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:152353. [PMID: 34914984 DOI: 10.1016/j.scitotenv.2021.152353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/19/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Healthcare-associated infections (HAIs) seriously threaten patient health in intensive care units (ICUs). Profiling the microbial composition and diversity in ICU is important to prevent HAI-related spreading. Given that microbial communities vary across different environments, the time-scale characteristics of pathogens in ICUs have not been explored in China. In our study, to study the bacterial communities of two different ICUs in China, we proceeded dynamic monitoring using 16S rRNA sequencing for a whole year among the bed sheets, bed rails, shared pulse oximeters, bedside lockers, nurses' hands, floor, and carts. Our results showed that the microbial composition significantly changed within months. Significant differences in alpha and beta diversities were also observed among the 12 sampling months in each ICU. Additionally, we found the persistence of several HAI-related bacteria, including Acinetobacter, Pseudomonas, Staphylococcus, Escherichia, and Enterococcus. Source tracking analysis showed that most bacteria in both ICUs came from buildings or human skin. With deep investigations of hospital microbial surveillance on a long-term time-scale, we hope that these results will provide constructive guidelines to prevent the spread of HAIs in ICUs.
Collapse
Affiliation(s)
- Kexin Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Fan Jiang
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Huixia Li
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Jingying Liu
- The Fourth People's Hospital of Sichuan Province, Chengdu, China
| | - Tao Yu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yiyang Du
- Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Li Yang
- College of Life Science & Biotechnology, Mianyang Normal University, Mianyang, China.
| | - Zilong He
- School of Engineering Medicine, Beihang University, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|