1
|
Birkelbach J, Seyfert CE, Walesch S, Müller R. Harnessing Gram-negative bacteria for novel anti-Gram-negative antibiotics. Microb Biotechnol 2024; 17:e70032. [PMID: 39487848 PMCID: PMC11531245 DOI: 10.1111/1751-7915.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024] Open
Abstract
Natural products have proven themselves as a valuable resource for antibiotics. However, in view of increasing antimicrobial resistance, there is an urgent need for new, structurally diverse agents that have the potential to overcome resistance and treat Gram-negative pathogens in particular. Historically, the search for new antibiotics was strongly focussed on the very successful Actinobacteria. On the other hand, other producer strains have been under-sampled and their potential for the production of bioactive natural products has been underestimated. In this mini-review, we highlight prominent examples of novel anti-Gram negative natural products produced by Gram-negative bacteria that are currently in lead optimisation or preclinical development. Furthermore, we will provide insights into the considerations and strategies behind the discovery of these agents and their putative applications.
Collapse
Affiliation(s)
- Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Carsten E. Seyfert
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Centre for Infection Research (HZI) and Saarland University Department of PharmacySaarbrückenGermany
- German Centre for Infection Research (DZIF), Partner Site Hannover‐BraunschweigBraunschweigGermany
| |
Collapse
|
2
|
Lancaster E, Winston R, Martin J, Lee J. Urban stormwater green infrastructure: Evaluating the public health service role of bioretention using microbial source tracking and bacterial community analyses. WATER RESEARCH 2024; 259:121818. [PMID: 38815337 DOI: 10.1016/j.watres.2024.121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Bioretention cells (BRCs) control stormwater flow on-site during precipitation, reducing runoff and improving water quality through chemical, physical, and biological processes. While BRCs are effective in these aspects, they provide habitats for wildlife and may face microbial hazards from fecal shedding, posing a potential threat to human health and the nearby environment. However, limited knowledge exists regarding the ability to control microbial hazards (e.g., beyond using typical indicator bacteria) through stormwater biofiltration. Therefore, the purpose of this study is to characterize changes in the bacterial community of urban stormwater undergoing bioretention treatment, with the goal of assessing the public health implications of these green infrastructure solutions. Samples from BRC inflow and outflow in Columbus, Ohio, were collected post-heavy storms from October 2021 to March 2022. Conventional culture-based E. coli monitoring and microbial source tracking (MST) were conducted to identify major fecal contamination extent and its sources (i.e., human, canine, avian, and ruminant). Droplet digital polymerase chain reaction (ddPCR) was utilized to quantify the level of host-associated fecal contamination in addition to three antibiotic resistant genes (ARGs): tetracycline resistance gene (tetQ), sulfonamide resistance gene (sul1), and Klebsiella pneumoniae carbapenemase resistance gene (blaKPC). Subsequently, 16S rRNA gene sequencing was conducted to characterize bacterial community differences between stormwater BRC inflow and outflow. Untreated urban stormwater reflects anthropogenic contamination, suggesting it as a potential source of contamination to waterbodies and urban environments. When comparing inlet and outlet BRC samples, urban stormwater treated via biofiltration did not increase microbial hazards, and changes in bacterial taxa and alpha diversity were negligible. Beta diversity results reveal a significant shift in bacterial community structure, while simultaneously enhancing the water quality (i.e., reduction of metals, total suspended solids, total nitrogen) of urban stormwater. Significant correlations were found between the bacterial community diversity of urban stormwater with fecal contamination (e.g. dog) and ARG (sul1), rainfall intensity, and water quality (hardness, total phosphorous). The study concludes that bioretention technology can sustainably maintain urban microbial water quality without posing additional public health risks, making it a viable green infrastructure solution for heavy rainfall events exacerbated by climate change.
Collapse
Affiliation(s)
- Emma Lancaster
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jay Martin
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Environmental Sciences Graduate Program, The Ohio State University, Columbus, OH, USA; Department of Food Science & Technology, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Shawver S, Ishii S, Strickland MS, Badgley B. Soil type and moisture content alter soil microbial responses to manure from cattle administered antibiotics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27259-27272. [PMID: 38507165 PMCID: PMC11052774 DOI: 10.1007/s11356-024-32903-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Growing concerns about the global antimicrobial resistance crisis require a better understanding of how antibiotic resistance persists in soil and how antibiotic exposure impacts soil microbial communities. In agroecosystems, these responses are complex because environmental factors may influence how soil microbial communities respond to manure and antibiotic exposure. The study aimed to determine how soil type and moisture alter responses of microbial communities to additions of manure from cattle treated with antibiotics. Soil microcosms were constructed using two soil types at 15, 30, or 45% moisture. Microcosms received biweekly additions of manure from cattle given cephapirin or pirlimycin, antibiotic-free manure, or no manure. While soil type and moisture had the largest effects on microbiome structure, impacts of manure treatments on community structure and individual ARG abundances were observed across varying soil conditions. Activity was also affected, as respiration increased in the cephapirin treatment but decreased with pirlimycin. Manure from cattle antibiotics also increased NH4+ and decreased NO3- availability in some scenarios, but the effects were heavily influenced by soil type and moisture. Overall, this work demonstrates that environmental conditions can alter how manure from cattle administered antibiotics impact the soil microbiome. A nuanced approach that considers environmental variability may benefit the long-term management of antibiotic resistance in soil systems.
Collapse
Affiliation(s)
- Sarah Shawver
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN, 55108, USA
| | - Michael S Strickland
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Brian Badgley
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
4
|
Tao S, Hu C, Fang Y, Zhang H, Xu Y, Zheng L, Chen L, Liang W. Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system. BMC Microbiol 2023; 23:380. [PMID: 38049763 PMCID: PMC10694887 DOI: 10.1186/s12866-023-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVE The purpose of this study is to reduce the spread of the vanA gene by curing the vanA-harboring plasmid of vancomycin-resistant using the CRISPR-Cas9 system. METHODS Two specific spacer sequence (sgRNAs) specific was designed to target the vanA gene and cloned into plasmid CRISPR-Cas9. The role of the CRISPR-Cas system in the plasmid elimination of drug-resistance genes was verified by chemically transformation and conjugation delivery methods. Moreover, the elimination efficiency in strains was evaluated by plate counting, PCR, and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by Etest strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the vanA gene. PCR and qPCR results indicated that recombinant pCas9-sgRNA plasmid can efficiently clear vanA-harboring plasmids. There was no significant correlation between sgRNA lengths and curing efficiency. In addition, the drug susceptibility test results showed that the bacterial resistance to vancomycin was significantly reduced after the vanA-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. The CRISPR-Cas9 system can block the horizontal transfer of the conjugated plasmid pUC19-vanA. CONCLUSION In conclusion, our study demonstrated that CRISPR-Cas9 achieved plasmid clearance and reduced antimicrobial resistance. The CRISPR-Cas9 system could block the horizontal transfer of plasmid carrying vanA. This strategy provided a great potential to counteract the ever-worsening spread of the vanA gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunwei Hu
- The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Lin Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
| |
Collapse
|
5
|
Zheng N, Hu W, Zhou X, Liu Y, Bartlam M, Wang Y. Influence of phycospheric bacterioplankton disruption or removal on algae growth and survival. ENVIRONMENTAL RESEARCH 2023; 237:117060. [PMID: 37659640 DOI: 10.1016/j.envres.2023.117060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/01/2023] [Accepted: 08/31/2023] [Indexed: 09/04/2023]
Abstract
Phycospheric bacteria play a crucial role in the survival of microalgae. However, the potential of using the growth regulation and community structure modulation of phycospheric bacteria to prevent the occurrence of blooms is yet to be verified. The phycospheric bacterioplankton of Cyclotella sp. can be categorized into HNA (high nucleic acid) bacteria and LNA (low nucleic acid) bacteria. 16S rRNA sequencing showed that the HNA bacteria exhibited higher α-diversity compared to the LNA bacteria, and the microbial community composition also exhibited variations. Metagenomic sequencing further indicated the distinct ecological functions between HNA and LNA bacteria. Furthermore, the study showcased the restorative capacity of the phycospheric bacterioplankton. Biomass analysis revealed that the recovery of phycospheric bacterioplankton positively influenced the microalgae growth, thus affirming the significance of phycospheric bacterioplankton to microalgae. The community structure of phycospheric bacterioplankton demonstrated a notable decrease in the abundance of restored LNA core bacteria. Additionally, the restored phycospheric bacterioplankton exhibited a more complex co-occurrence network structure, resulting in decreased resistance and sensitivity of microalgae to adverse environments. The presence of phycospheric bacterioplankton provides a protective shield for microalgae, and thus destabilizing or removing phycospheric bacterioplankton may effectively inhibit growth of microalgae.
Collapse
Affiliation(s)
- Ningning Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Wei Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xinzhu Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yu Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), College of Life Sciences, Nankai University, Tianjin, 300350, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Nankai International Advanced Research Institute (Shenzhen Futian), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Covas C, Figueiredo G, Gomes M, Santos T, Mendo S, Caetano TS. The Pangenome of Gram-Negative Environmental Bacteria Hides a Promising Biotechnological Potential. Microorganisms 2023; 11:2445. [PMID: 37894103 PMCID: PMC10609062 DOI: 10.3390/microorganisms11102445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Secondary metabolites (SMs) from environmental bacteria offer viable solutions for various health and environmental challenges. Researchers are employing advanced bioinformatic tools to investigate less-explored microorganisms and unearth novel bioactive compounds. In this research area, our understanding of SMs from environmental Gram-negative bacteria lags behind that of its Gram-positive counterparts. In this regard, Pedobacter spp. have recently gained attention, not only for their role as plant growth promoters but also for their potential in producing antimicrobials. This study focuses on the genomic analysis of Pedobacter spp. to unveil the diversity of the SMs encoded in their genomes. Among the 41 genomes analyzed, a total of 233 biosynthetic gene clusters (BGCs) were identified, revealing the potential for the production of diverse SMs, including RiPPs (27%), terpenes (22%), hybrid SMs (17%), PKs (12%), NRPs (9%) and siderophores (6%). Overall, BGC distribution did not correlate with phylogenetic lineage and most of the BGCs showed no significant hits in the MIBiG database, emphasizing the uniqueness of the compounds that Pedobacter spp. can produce. Of all the species examined, P. cryoconitis and P. lusitanus stood out for having the highest number and diversity of BGCs. Focusing on their applicability and ecological functions, we investigated in greater detail the BGCs responsible for siderophore and terpenoid production in these species and their relatives. Our findings suggest that P. cryoconitis and P. lusitanus have the potential to produce novel mixtures of siderophores, involving bifunctional IucAC/AcD NIS synthetases, as well as carotenoids and squalene. This study highlights the biotechnological potential of Pedobacter spp. in medicine, agriculture and other industries, emphasizing the need for a continued exploration of its SMs and their applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Tânia S. Caetano
- CESAM and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (C.C.); (G.F.); (S.M.)
| |
Collapse
|
7
|
Walesch S, Birkelbach J, Jézéquel G, Haeckl FPJ, Hegemann JD, Hesterkamp T, Hirsch AKH, Hammann P, Müller R. Fighting antibiotic resistance-strategies and (pre)clinical developments to find new antibacterials. EMBO Rep 2022; 24:e56033. [PMID: 36533629 PMCID: PMC9827564 DOI: 10.15252/embr.202256033] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Antibacterial resistance is one of the greatest threats to human health. The development of new therapeutics against bacterial pathogens has slowed drastically since the approvals of the first antibiotics in the early and mid-20th century. Most of the currently investigated drug leads are modifications of approved antibacterials, many of which are derived from natural products. In this review, we highlight the challenges, advancements and current standing of the clinical and preclinical antibacterial research pipeline. Additionally, we present novel strategies for rejuvenating the discovery process and advocate for renewed and enthusiastic investment in the antibacterial discovery pipeline.
Collapse
Affiliation(s)
- Sebastian Walesch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Joy Birkelbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Gwenaëlle Jézéquel
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany
| | - F P Jake Haeckl
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Julian D Hegemann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Thomas Hesterkamp
- Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| | - Peter Hammann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)SaarbrückenGermany,Department of PharmacySaarland UniversitySaarbrückenGermany,Helmholtz Centre for Infection research (HZI)BraunschweigGermany,German Center for infection research (DZIF)BraunschweigGermany,Helmholtz International Lab for Anti‐InfectivesSaarbrückenGermany
| |
Collapse
|
8
|
Wang T, Wang H, Feng K, Li H, Wang H. Soil bacteria around a derelict tailings pile with different metal pollution gradients: community composition, metal tolerance and influencing factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60616-60630. [PMID: 35426553 DOI: 10.1007/s11356-022-20142-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Bacteria play a vital role in ecological processes of soil contaminated by heavy metals. Here, soil sampling was carried out around a tailings pile contaminated to different degrees by cadmium (Cd), lead (Pb) and arsenic (As). The bacteria in the soil were cultured, separated and purified on Luria-Bertani medium, and the changes in bacterial communities in soils with different pollution levels were analysed with 16S rRNA sequencing. Bacillus pacificus strain MZ520364 was found to be highly tolerant to Cd, Pb and As, and single-metal and multimetal tolerance experiments were further conducted with this strain. The results obtained from alpha diversity and operational taxonomic unit (OTU) statistical analyses showed a significant difference in bacterial composition among soils with different metal pollution levels, and the highest bacterial diversity was found at the most severely polluted site. Evidence from variance partitioning analysis (VPA) and the Spearman correlation heatmap analysis showed that the leading factors affecting bacterial community composition were cation exchange content (CEC), pH, total Zn, total As, and available As concentrations in soil. Additionally, in the single-metal treatments, B. pacificus MZ520364 could tolerate 600 mg/L Cd2+, 1000 mg/L Pb2+ or 700 mg/L As3+. When Cd, Pb and As coexisted, the best growth of B. pacificus MZ520364 was present at 120 mg/L Cd2+, 200 mg/L Pb2+ and 150 mg/L As3+. The effect of Cd, Pb and As on the growth of the strain followed the order of Cd > As > Pb, and the heavy metal combination showed more toxicity than single metals. In summary, our results revealed the ecological impact of soil physicochemical properties on the diversity and richness of soil bacterial communities and suggested that B. pacificus MZ520364 may be used for the remediation of Cd-Pb-As co-contaminated soil.
Collapse
Affiliation(s)
- Tian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haijuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China
| | - Kaiping Feng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Haiyan Li
- School of Medicine, Kunming University of Science and Technology, Kunming, 650500, China
| | - Hongbin Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
- Yunnan Key Lab of Soil Carbon Sequestration and Pollution Control, Kunming, 650500, China.
| |
Collapse
|
9
|
Brinkmann S, Spohn MS, Schäberle TF. Bioactive natural products from Bacteroidetes. Nat Prod Rep 2022; 39:1045-1065. [PMID: 35315462 DOI: 10.1039/d1np00072a] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Covering: up to end of January 2022Bacteria representing the phylum Bacteroidetes produce a diverse range of natural products, including polyketides, peptides and lactams. Here, we discuss unique aspects of the bioactive compounds discovered thus far, and the corresponding biosynthetic pathways if known, providing a comprehensive overview of the Bacteroidetes as a natural product reservoir.
Collapse
Affiliation(s)
- Stephan Brinkmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Marius S Spohn
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany.
| | - Till F Schäberle
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Branch for Bioresources, 35392 Giessen, Germany. .,Institute for Insect Biotechnology, Justus Liebig University of Giessen, 35392 Giessen, Germany.,German Centre for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, Giessen, Germany
| |
Collapse
|
10
|
Chau LTT, Kim YS, Cha CJ. Pedobacter aquae sp. nov., a multi-drug resistant bacterium isolated from fresh water. Antonie van Leeuwenhoek 2022; 115:445-457. [DOI: 10.1007/s10482-022-01708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/11/2022] [Indexed: 12/01/2022]
|
11
|
Gu Y, Zheng R, Sun C, Wu S. Isolation, Identification and Characterization of Two Kinds of Deep-Sea Bacterial Lipopeptides Against Foodborne Pathogens. Front Microbiol 2022; 13:792755. [PMID: 35185844 PMCID: PMC8851162 DOI: 10.3389/fmicb.2022.792755] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022] Open
Abstract
Under multiple stresses of deep sea, many microorganisms have evolved potentials to produce different metabolites to cope with the stresses they face. In this study, we isolated a bacterial strain Bacillus sp. YJ17 from the deep-sea cold seep. Compared with commercial food preservative nisin, it showed broad and strong antibacterial activities against foodborne pathogens, including multiple resistant bacteria Pseudomonas aeruginosa PAO1 and methicillin-resistant Staphylococcus aureus (MRSA). The active agents were purified by reversed-phase high performance liquid chromatography (RP-HPLC). Analysis of high-energy collision induced dissociation mass spectrometry (HCD-MS) showed that the two active agents belong to family of fengycin and surfactin, and based on results of tandem mass spectrometry (HCD-MS/MS), the amino acid sequence of purified fengycin and surfactin might be Glu-Orn-Tyr-Thr-Glu-Val-Pro-Gln-Tyr-Ile and Glu-Leu/Ile-Leu/Ile-Leu/Ile-Val-Asp-Leu/Ile, respectively. Since the purified fengycin and surfactin exhibited strong inhibition against P. aeruginosa PAO1 and MRSA respectively, the inhibition mechanisms of fengycin against P. aeruginosa PAO1 and surfactin against MRSA were investigated by electron microscopy. After treatment with purified fengycin, the morphology of P. aeruginosa PAO1 became abnormal and aggregated together, and obvious cytoplasmic leakage was observed. After treatment with purified surfactin, the MRSA cells clustered together, and cell surface became rough and jagged. Further study showed that reactive oxygen species (ROS) accumulation and cell membrane damage occurred in P. aeruginosa PAO1 and MRSA after treated with fengycin and surfactin, respectively. Furthermore, typical ROS scavenging enzymes catalase (CAT) and superoxide dismutase (SOD) were also significantly reduced in P. aeruginosa PAO1 and MRSA after treated with fengycin and surfactin, respectively. Therefore, the inhibition mechanisms of fengycin against P. aeruginosa PAO1 and surfactin against MRSA are closely related with accumulation of ROS, which might be due to the decreased activity of CAT and SOD after treated with fengycin and surfactin, respectively. Overall, our study provides good candidates from the deep-sea environment to deal with foodborne pathogens, especially multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yanjun Gu
- College of Life Sciences, Qingdao University, Qingdao, China
| | - Rikuan Zheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Shimei Wu
- College of Life Sciences, Qingdao University, Qingdao, China
- *Correspondence: Shimei Wu,
| |
Collapse
|